Chapter 3

In materio computation using carbon
nanotubes

Julian F. Miller and Simon Hickinbotham

All computing is physical (Landauer, 1996), requiring a substrate in which to
perform the computation. The distinction between in materio computation
and CCOMP is that the latter engineers logical states in the substrate that
are then used as the basis for executing processes that obey the Church-
Turing principle via the von Neumann architecture. By contrast, in materio
computation is not aimed at imposing a model upon the substrate but rather
with exploiting a naturally-occurring computational property that it may
have.

This case study contains many quotations. Within quotations, double
square brackets appearing within quotes indicate the reference numbers in
the work from which the quote was taken. For example “[[3]]” (Miller et al.,
2014) would indicate reference number 3 within the text of bibliography item
(Miller et al., 2014).

3.1 Overview

3.1.1 In materio computing

The goal here is to find out simultaneously both what the computational
power of the substrate might be and also how best to program it. An evo-
lutionary search-based algorithm is usually employed to “exploit physical
characteristics within the material without much concern as to how those
characteristics could be formally understood or engineered” (Clegg et al.,
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Fig. 3.1 Overview of in materio computing from (Clegg et al., 2014a)

2014b). This is appropriate when the system is not fully understood, as the
fitness of a configuration can be calculated without necessarily having knowl-
edge of how the computation is performed. Indeed, this is often the great
strength of the approach, as it raises the possibility of exploiting hitherto
unknown properties of the computational substrate.

“The concept of [in materio computing] grew out of work that arose in a sub-field
of evolutionary computation called evolvable hardware [[30, 38, 76, 104]] particu-
larly through the work of Adrian Thompson [[86, 91]]. In 1996, Thompson famously
demonstrated that unconstrained evolution on a silicon chip called a Field Pro-
grammable Gate Array (FPGA) could utilize the physical properties of the chip to
solve computational problems [[85]].” —(Miller et al., 2014)

An overview of the processes involved are shown in figure 3.1. There are
three domains: the computer domain, which manages the evolutionary search;
the data acquisition domain, which manages the i/o between the configurable
material and the computer; and the physical domain, which generates the so-
lution. The search commences in the lower box in the ‘computer domain’, by
generating a set of genotypes to be evaluated. Each genotype specifies both
the physical configuration of the substrate, and the input data for the com-
putation that is presented to it. This gives maximum flexibility for searching
the space of possible computations that can be performed on the input data.
For each genotype, the material is reconfigured and the inputs are then pro-
cessed and fed into the physical domain in which the substrate resides. The
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Fig. 3.2 Carbon nanotubes constructed from graphene sheets (Graham et al., 2005)

substrate is configured and processes the input data, and then produces out-
puts. The outputs are processed in the data acquisition domain and then
used in a fitness evaluation of the genotype that specified the configuration.

The striking feature of this process is that there is a minimal requirement
to understand the means by which the configurable material computes on
the input data. Indeed, all that one needs to know about the material doing
the computation that it is possible to configure it using a subset of the input
channels. The inputs are usually electrical due to the fact that it is then
straightforward to link the inputs to the genotype that is held on the classical
computer, making the process much faster.

3.1.2 Carbon nanotubes

Carbon nanotubes are an integral part of the push towards further miniatur-
isation in classical semiconductor devices (ITRS, n.d.).

“Carbon nanotubes (CNTs) were discovered by lijima in 1991 while investigating
the soot of an arc-discharge experiment used to create C 60 buckyballs [[2]]. From
transmission electron microscope (TEM) images of periodic structures in the soot
he speculated that concentric, graphene-based tubes had formed in the discharge
zone. The basic forms of single-walled and multi-walled CNTs are shown in Fig.
3.2 together with a planar graphene sheet. One year later Hamada et al. suggested
that these tubes could be metallic or semiconducting from tight binding calculations
[[3]]. In the same year Ebbesen and coworkers presented an optimization of the arc-
discharge method that yielded large quantities of CNTs [[4]]. Despite this initial
success, it took a further four years to purify the arc-discharge material sufficiently
to enable devices to be created, starting with the first measurement by Ebbesen
et al. on the resistance of multi-walled carbon nanotubes [[5]]. Two years later the
first transistor was made [[6]] and ballistic transport in multi-walled CNTs was
established [[7]].” —(Graham et al., 2005)

“The creation of a complete, functioning microelectronic system using only self-
assembly and other nanotechnology methods is an enormous task requiring many
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Fig. 3.3 Configurable carbon nanotube substrate embedded next to copper electrodes.
From (Clegg et al., 2014b)

different components to work together. Several important building blocks in this
process have already been demonstrated, for instance selective bonding using DNA
[[8]], but the ability to produce complex structures reliably seems a long way off. In
particular, for microelectronics, it is important to reproduce the same device millions
of times over almost flawlessly. For this reason a number of groups ... are focusing on
the selective integration of specific bottom up components into traditional top down
microelectronics process flows to create hybrid systems with superior properties.”
—(Graham et al., 2005)

“Using carbon nanotubes as macromolecular electrodes and aluminum oxide as in-
terlayer, isolated, non-volatile, rewriteable memory cells with an active area of 36
nm2 have been achieved, requiring a switching power less than 100 nW, with esti-
mated switching energies below 10 fJ per bit [[35]].” —(Graham et al., 2005)

A key area of research in this domain is the challenge of reliability of the
devices that are produced. Note however that the precision of devices is only
applicable in CCOMP applications, and the UCOMP approach of in materio
computation described in the previous section may provide an alternative
route to exploiting these devices.

In (Clegg et al., 2014b), Clegg and Miller used a carbon nanotube assembly
to solve simple travelling-salesman problems (TSP):

“Here one wishes to find the minimum length tour that visits a collection of cities.
A solution can be represented by a permutation of the cities. Such a problem is
easily mapped onto an electrode array. In this case there are no input electrodes,
only output and configuration electrodes. One allocates as many output electrodes
as there are cities. The objective is to obtain a set of output voltages which can be
mapped into a permutation of cities.” —(Clegg et al., 2014b).

In short, each electrode represents a city in the TSP, and the ranked set of
voltages at each electrode describes the best tour that the salesman should
take. Initially, the voltage-ranking is random, but through evolution, the
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voltages at the configuration electrodes affect the voltages at the output
electrodes such that the correct solution emerges.
This methodology highlights some of the issues with this approach:

e It may be difficult and time-consuming to configure the device. The key
design challenge of this approach is to find a convenient way of influencing
the way the device processes the inputs.

e The device may not operate independently of its environment

e The substrate may have unwanted ‘memory’ of earlier events, which could
influence the output of the current computation.

e Each implementation is a “one shot” solution: an evolved configuration
on one device is not guaranteed to work on another.

e the result is merely a look-up table (although more sophisticated compu-
tations are in the pipeline).

However, the potential advantages should not be ignored (Miller et al.,
2014):

e The response of the physical system does not have to be understood in
depth.

e Unknown physical effects can be exploited, which may lead to new devices

e A solution can be found without any programming or design constraints,
or limitations on human imagination and knowledge about the substrate.

e The substrate’s computational capacity can potentially be exploited to
the full.

e The amount of computation a small piece of material can do may be
enormous.

3.2 Contribution to UCOMP Aspects

3.2.1 Speed

In the TSP application (Clegg et al., 2014b), measuring the chip’s output
may be relatively slow, but the actual processing rate of a trained chip is
nanoseconds, due to the massive parallelism inherent in the substrate. This
means that the approach would be good for complex recognition tasks as part
of a robot architecture for example.

The speed of configuring the device may seem slow, since one has wait
until the evolutionary algorithm converges to a solution. However, in a strict
sense, this comparison should be made with the time it takes a human pro-
grammer to write a program to run on a classical computer (repeatability
notwithstanding).
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3.2.2 Resources

Although the CN chip is a low-voltage device, further research is needed to
discover the limit on how low a voltage would be needed to make the system
operate reliably.

Embedding CNs in liquid crystal is an approach that might yield further
efficiencies in this area. The nanotubes move in the liquid crystal according
to the voltages on the configuration electrodes. If the configured arrangement
could subsequently be ‘fixed’, then the circuit would work with virtually no
power at all. This approach also has the potential to make the CN assemblage
easier to program for more complex tasks.

3.2.3 Quality

Considered independently of the programming criteria, these devices are po-
tentially unbounded in their ability to carry out non-conventional computa-
tion.

“A strong theme in evolution-in-materio is the evolution of novel forms of compu-
tation. It appears to be a methodology that has promise in building new kinds of
analogue computing devices. Evolution is used as the programming methodology.
If unknown physical properties and interactions are to be utilized in a computer
program, it is obvious that the the program cannot be designed in advance. An evo-
lutionary algorithm together with a fitness function rewards those configurations of
the system that provide the desired computational response. To some extent, we can
see the program itself as ‘emergent’, since it is not known in advance and emerges
during the evolutionary process.” (Miller et al., 2014)

3.2.4 Embeddedness

Although the computational function of the substrate is non-classical, we
can not currently embed the system in a native environment due to the
requirement for electrical configuration signals to “program” the device. If
it were possible to “fix” the program, such is in the liquid crystal approach
discussed in the Resources aspect above, it may become possible to embed
the computational material in a variety of devices that use carbon nanotubes.

3.2.5 Formalism

There is at present no formalism for the in materio approach other than the
use of search algorithms for programming. The best match is Shannon’s work
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on analogue computing. However, some of the pioneering work in the 50s etc.
is not written up well. A lot of ‘human in the loop’ practises went on whilst
training the systems. (See also work by John Mills/Lee Reubel in Indiana.)

3.2.6 Programmaing

Any stochastic search algorithm can be used to train in materio. This is
because we don’t know what the computational elements are. The process is
analogous to training a neural network, with lots of back-propagation.

In terms of scalability, it may be possible to connect a number of slides
together in a neural network like arrangement, using each CN chip as a hard-
ware component. By this method, it may be possible to get some degree of
programmability at a higher level.

“We tentatively suggest that it will not be possible to construct computational
systems of equivalent power to living organisms using conventional methods that
employ purely symbolic methods. We argue that it will be advantageous for complex
software systems of the future to utilize physical effects and use some form of search
process akin to natural evolution.” —(Miller et al., 2014)

“According to Conrad this process leads us to pay ‘The Price of Programmability’
[[21]], whereby in conventional programming and design we proceed by excluding
many of the processes that may lead to us solving the problem at hand. Indeed as
Zauner notes, programmability is not a strict requirement for information processing
systems since the enviable computing capabilities of cells and organisms are not
implemented by programs. Artificial neural networks are also not programmable in
the normal sense [[103]].” —(Miller et al., 2014)

3.2.7 Applications

In addition to the travelling salesman problem outlined above, In materio
computation with carbon nanotubes has been used to develop solutions to
function optimisation (Mohid et al., 2014b), machine learning (Mohid et al.,
2014d), bin packing (Mohid et al., 2014c¢) and frequency classification (Mohid
et al., 2014a).

At present it remains unclear what the best potential applications of this
technology could be. It is anticipated that this should be revisited when some
of the recommendations are implemented and challenges overcome.
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3.2.8 Philosophy

Conrad criticizes traditional models of computing and he identifies that they
have a common feature: at most very limited context dependency (Conrad,
1999). The logic gates in conventional machines implement formally defined
input-output behaviours that are independent of the overall design of the
circuit. Turing machines read and write symbols on individual tape squares
in a manner that does not depend on the arrangement of symbols on the
tape. Whereas computation in physical systems (particularly biological) are
almost always context dependent.

3.3 Main Achievements so far

As detailed above, the potential for carbon nanotubes as a computational sub-
strate is promising, but constrained by the difficulties in producing complex
structures reliably. By using in materio computation methods, researchers are
able to use the material in configurations that can currently be manufactured
relatively cheaply. In summary:

e The core methodology has been proven
e Working hardware has been designed and engineered
e ‘Software’ (Implementation of TSP) has been tested and proven

3.4 What could be achieved in ten years?

Research in this area is focussed on demonstrating that devices can be pro-
grammed to solve complex problems faster — it is thought that this is reason-
ably feasible to do.

One way to prove this is to solve well known NP-hard problems. These
solutions would act as a benchmark for the process and allow comparison with
conventional CCOMP solutions. However, the focus on established CCOMP
test problems merely explores solutions to problems that are well-known to
be solvable by CCOMP devices. This is not necessarily the best application
for CN chips, but perhaps gives the clearest demonstration of their potential.

An alternative goal would be to do the same thing as Shaw’s factorisation
of numbers on a quantum computer. The same potential exists here, but
is achieved via exploiting the massive parallelism of the CN chip. It must
be borne in mind that the ‘true’ application may be elsewhere — biological
emulation perhaps (due to similarities in the parallelism between biological
systems and the methodolgy described here. ).
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There is also potential to apply the techniques in other areas. For example
the in materio evolution principle could be used to evolve bacterial colonies
sitting in meshed combs of electrodes. Thus we could develop interfacing
methods in biology.

3.5 Current challenges

3.5.1 Substrate

It has been difficult to get a large number of electrodes in one nanotube array.
The Norwegian team in the NASCENCE consortium are working on this. it
might be possible to buy electrode arrays rather than manufacture them, but
it is unclear what the best method is for putting nanotube material onto the
chip. A significant investment needed to achieve this, but this is unlikely to
be secured without a demonstration of the potential first. Unfortunately, it
might not be possible to demonstrate the potential without a large electrode
array. A method needs to be found to balance this risk.

Another problem is the sheer range of potential in materio devices: what
materials should we try? What concentration? What insulator? Without
knowledge of the properties and with a richer model of in materio com-
putation, we are conducting a blind search of the material space.

“Harding et al. found that it was relatively easy to evolve a tone discriminator in lig-
uid crystal — much easier than Thompson found it to be in silicon. Conceptually, we
can understand this since most physical systems are likely to be endowed with many
exploitable properties. We refer to this as richness. Silicon based electronic circuits
have had the physics constrained as much as possible to implement Boolean logic and
thus allow Turing computation. One way of possibly testing the relationship with
richness and evolvability would be to attempt to evolve solutions to computational
problems on a variety of FPGAs (say) with varying degrees of damage (perhaps by
irradiating them). Experiments with radiation damaged FPTAs showed that evolu-
tionary algorithms could make use of damaged parts of the chip... It remains to be
seen if such damage actually helps solve certain computational problems” —(Miller
et al., 2014)

Maybe we should try to understand the simplest possible implementation
of an in materio system, and use this to guide the choice of further systems
that use those principles. There remains the possibility that in materio com-
puting might ‘invent’ a new technology by guiding a search of the possible
physical arrangement of substrate.
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3.5.2 Environmental effects, and the coherence
problem

“Ideally, the material would be able to be reset before the application of new config-
uration instructions. This is important as without the ability to reset the material it
may retain a memory from past configurations, this could lead to the same config-
uration having different fitness values depending on the history of interactions with
the material. ” —(Miller et al., 2014)

3.6 Outlook and recommendations

“One of the difficulties of analogue computers was that they had to be setup by
experts who could create analogues of specific systems in convenient physical devices.
Using a search process running on a modern digital computer gives us a new way
to “program” a physical device. It also gives us a methodology for the discovery of
new computational devices that use physical effects for computation in ways that
human ingenuity has thus far failed to invent. ” —(Miller et al., 2014)
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