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Abstract. We propose building neutral networks in needle-in-haystack fitness 

landscapes to assist an evolutionary algorithm to perform search. The 

experimental results on four different problems show that this approach 

improves the search success rates in most cases. In situations where neutral 

networks do not give performance improvement, no impairment occurs either.  

We also tested a hypothesis proposed in our previous work. The results support 

the hypothesis: when the ratio of adaptive/neutral mutations during neutral walk 

is close to the ratio of adaptive/neutral mutations at the fitness improvement 

step, the evolutionary search has a high success rate. Moreover, the ratio 

magnitudes indicate that more neutral mutations (than adaptive mutations) are 

required for the algorithms to find a solution in this type of search space.  

1  Introduction 

Many optimization problems can be defined as search problems: all possible solutions 

constitute the search space; the objective is to find the one that best solves the given 

problem. In many search problems, there is sufficient correlation between search points 

to allow heuristic search techniques to find good solutions faster than random search. 

However, there is one kind of search space, needle-in-haystack, which is difficult for 

heuristic search algorithms to outperform random search.  

In a needle-in-haystack type of search space, a solution is either a needle or a piece 

of hay. In other words, a search algorithm either finds a perfect solution (the needle) 

or otherwise (the hay). No knowledge about the location of the needles can be 

obtained from examining the hays. In this kind of situation, a heuristic search 

algorithm works like a random search algorithm. When the number of solutions in the 

search space is small, finding a good solution is difficult, no matter what search 

algorithm one uses.  

Evolutionary algorithms are heuristic search algorithms where the search process is 

directed by fitness: only solutions that have competitive fitness are considered in the 

solution population pool. An evolutionary algorithm selects solutions with good 

fitness and uses them to find solutions with better fitness. 

 What if the search space only has two possible fitness values (one for the needles 

and the other for the hay)? Evolutionary algorithms seem to become helpless in this 

kind of situation. In this study, we investigate building a network within the “hay” to 

provide a trail for the search process. In this way, the discovery of the “needle” 

solutions may become easier. Since the network connects solutions with the same 



 

fitness (within the hays), it is called “neutral network”. Moreover, an evolutionary 

algorithm utilizing such a network for search is said to support neutrality, a term 

borrowed from evolutionary biology.  

Neutral theory [3] in evolutionary biology has inspired our work in incorporating 

neutrality in evolutionary algorithms (Section 2). Previously, we have devised a 

Genetic Programming (GP) system that utilizes neutrality to search for problem 

solutions [12]. When applied to a Boolean function problem, the solutions were found 

with a higher success rate. We analyzed the results and identified that high success 

rates are associated with a particular adaptive/neutral mutation ratio pattern. This 

work extends that finding by applying the system on four needles-in-haystack 

problems. Moreover, the relationship between neutrality and mutation rates is 

investigated.  

The paper is organized as follows. Section 2 provides the background of this work. 

It first explains neutral theory in evolutionary biology and then gives a summary of 

our previous work on using neutrality for evolutionary search.  Section 3 reviews 

related work. In Section 4, the GP system is described. Section 5 presents the four 

investigated needle-in-haystack problems. In Section 6, the experimental setup is 

given. The results are presented in Section 7. Section 8 discusses the experimental 

results and Section 9 gives our conclusions.  

2 Background 

The theory of natural evolution established by Darwin has had profound impact on 

biology. Most biologists are convinced that selection acting on advantageous 

mutations is the driving force of evolution. It was not until the late 1970s when 

molecular data became available, that the theory was challenged. In particular, Motoo 

Kimura found that the number of mutant substitutions in amino acid sequences of 

hemoglobin was too large to be explained by the theory of natural selection. Based on 

this discrepancy, he proposed the neutral theory, which states that most mutants at the 

molecular level in evolution are caused by random genetic drift rather than by natural 

selection [3]. In other words, the mutants involved are neither advantageous nor 

disadvantageous to the survival or reproduction of the individual. Around the same 

time, a similar theory was published by King and Jukes [4]. The two papers have 

provoked much controversy and are still subject to strong debate [6]. 

Darwinism has been the dominating principle behind the implementation of 

evolutionary algorithms: the evolved entities contain no explicit neutral mutants. In 

this way, a mutant is either advantageous or disadvantageous. Selection acts upon 

them to propagate those that are advantageous.  

 But can neutral mutations (those are neither advantageous nor disadvantageous) 

benefit evolutionary search? To investigate these questions, we have devised a 

methodology for systematic study of this subject [12].  In particular, we measure the 

number of neutral mutations that occur in the evolved entities during evolutionary 

search. In this way, the impact of neutrality on search performance can be analyzed 

quantitatively. Using this approach, we have studied a Boolean function problem. The 

results show that there is a positive relationship between neutral mutations and 

success rate: the larger the allowed neutral mutations quantity the greater is the 

possibility for the evolutionary search to find a solution. 

The amount of neutral mutations is measured in the selection step, which evaluates 

both the fitness and the number of neutral mutations in the evolved entities. More 



 

precisely, an offspring solution is selected to replace the current winner only when it 

has a better fitness or it has the same fitness but its neutral mutants are within a 

specified range (the Hamming bound). On can envisage all solutions with the same 

fitness and satisfy the Hamming bound are connected in a network (neutral network). 

The search process selects solutions in the network one after another in the manner of 

a neutral walk. We found that such a walk can lead to a solution with a better fitness if 

it satisfies the fitness improvement criterion. The criterion is concerned with the ratio 

of adaptive and neutral mutations. The analysis indicated that when this ratio for the 

neutral walks was close to the ratio for the fitness improvement, a high probability of 

success occurred. 

Adaptive and neutral mutations play different roles in the evolutionary search: 

adaptive mutations exploit the accumulated beneficial mutations while neutral 

mutations provide an exploratory power by maintaining genetic diversity. Under the 

dynamics of the evolutionary process, neutral mutants may contribute to the fitness 

later. For an evolutionary search to be successful, it requires a balance between 

exploitation and exploration. The ratio between adaptive and neutral mutations is 

therefore an appropriate fitness improvement criterion in evolutionary search. 

3 Related Work 

Tomoko Ohta studied the ratio of adaptive and neutral mutations in DNA sequence 

data to test her nearly neutral theory [10]. Unlike Kimura’s neutral theory, which 

believes that a mutation is either selective or neutral, the nearly neutral theory 

believes that there is a class of mutations (very weakly selected mutations) whose 

behavior is influenced by both genetic drift and selection. Moreover, in small 

population genetic drift dominates while in large populations selection is more 

influential.  

She tested this theory by comparing synonymous and nonsynonymous mutations of 

49 mammalian genes. The results agree with the theory. Later, McDonald and 

Kreitman also studied the relative number of synonymous and nonsynonymous 

mutations within a species. The results, however, were contrary to the theory [8]. 

Claus Wilke and colleagues studied the evolution of digital organisms (as computer 

programs) using the Avida system [11]. They reported that under high mutation rates, 

an organism that has its neighbors (those accessible by one mutation step) with a 

similar fitness (not necessary the same fitness) had a higher reproduction rate. The 

reason is that such flat fitness landscape is more robust against mutations than a 

fitness landscape that has high and narrow peak. Although they didn’t mention neutral 

networks, where the neighbors have the same fitness, one would expect the same 

findings. 

This result is not surprising, as there have been various research reports about the 

buffer effect of neutral mutations against disruptive mutations [1]. The existence of 

neutral networks hence is beneficial to the organism’s reproduction rate. We have 

reported a similar result on a Boolean function landscape in our previous work [12]. 

However, with needle-in-haystack landscapes, an opposite result is found: high 

mutation rates also give high reproduction rates. The details are given in Section 8.2. 

Marc Ebner and colleagues also studied the relationship between neutral networks 

and evolvability [2]. Particularly, they investigated a search space with 2
16

 possible 

fitness values. Moreover, these fitness values were divided into 64 groups. Their 

selection criterion was similar to ours in that they allowed an individual with better or 



 

equal fitness to replace the current winner. They experimented with 3 different sizes 

of neutral network (1, 2
112

, 2
320

) using a single point mutation. They reported that the 

larger the network (more neutrality), the higher the average population fitness. This 

result is consistent with that in our previous paper where wider ranges of neutrality 

levels (6) and mutation rates (11) were investigated [12]. 

4 Cartesian Genetic Programming 

Cartesian Genetic Programming (CGP) was first formally proposed in [9]. In CGP, a 

genotype is an integer string that encodes an indexed, feedforward, acyclic graph. 

Unlike the parse tree representation in the standard GP [5], a genotype-phenotype 

mapping is used to create the graph phenotype from the integer string genotype. Each 

node in the genotype contains a multiple number of genes; some of them are link 

values. The nodes that are not involved in the linked path between the inputs and 

outputs of the program are inactive in the phenotype. Such nodes have no effect on 

the behavior of the phenotype.   

For example, Figure 1(a) is a genotype for even-5-parity function (described in 

Section 5) that is mapped into a phenotype in 1(b). The alleles in bold take value from 

the set {0,1}, which represent the Boolean function xor and eq respectively. The 

function inputs are denoted by labels 0 to 4 (and in the phenotype as x0 to x4). The 

node outputs are labeled from 5 to 10. There are six nodes in the genotype; each has 3 

genes (two input link values and one Boolean function value). The genotype is read 

from the last gene on the right (10) towards the left. Since 10 refers to the rightmost 

node (with genes 8 4 1) it is in the phenotype: it is an EQ node with one input 

connected to the even-parity input 4, and the other is connected to the node output 8. 

So the node with output 9 is not involved in the phenotype. This inactive node is the 

only node that refers to the node with output 7, so this too is inactive (in gray in 

Figure 1(a)). All other nodes outputs are referenced so are involved in the phenotype. 

 
Node output                    5         6          7           8          9        10 

 

0 1 1   2 5 1   5 5 0   6 3 0   4 7 1   8 4 1   10 

 (a) 

 

 

 

 

(b) 

Figure 1: A genotype (a) and its phenotype (b) for even-5-parity. 

Mutations applied to inactive genes are neutral while on active genes can be 

adaptive or neutral (see Section 4.1). This genotype representation, in which some 

genes are active and others inactive, allows neutral mutations to be measured as 

Hamming distance. This is described in Section 4.1. 

4.1 Neutrality Measured as Hamming Distance  

When a mutation operation generates a different program with the same fitness, it 

involves a number of neutral mutations. Neutral mutations on active genes are the 

results of functional redundancy or introns, hence represent implicit neutrality. In 

x0 

x1 

x2 

x3 x4 

 XOR  EQ  EQ  EQ 



 

contrast, neutral mutations on inactive genes represent explicit neutrality. Regardless 

the source of neutrality (implicit or explicit), the overall amount of neutral mutations 

between the parent-offspring genotypes pair can be measured according to their 

Hamming distance. For example, the following two genotypes have Hamming 

distance of 13. The number of active genes changes between the two genotypes is 12 

(the node with output link number 6 contributes three active genes changes because it 

was inactive in Genotype 1 but becomes active in Genotype 2). The number of 

inactive genes changes is two (corresponding to the node with output link number 4). 

Note that the link path in the graph is traversed starting from the last node with the 

final output link. For example, in Genotype 1, the last node (with output link 7) has 

input links of 5 and 1. This makes node with output link 5 active. This node has input 

links of 3 and 1. It makes the node with output link 3 active. The nodes with output 

link 4 and 6 are not used as input links for any active nodes, hence are inactive. 
 
Output link  2 3   4    5    6     7 
Genotype 1 0 1 1   0 2 1    0 1 0    3 1 0    4 3 1    5 1 1    
Genotype 2 0 0 1  2 1 0 1 3 0 3 0 1 2 5 1 6 5 0 

 

Using Hamming distance to measure neutral mutations has two advantages: 

• It provides a quantitative measurement of neutrality in evolutionary search. 

• It provides a flexible way to implement neutrality in evolutionary algorithms. 

5 Even-Parity Problems 

Even-parity is a widely used benchmark problem in GP and Evolvable Hardware 

communities. The problem can be defined with a different number of Boolean inputs, 

e.g. even-3-parity, even-4-parity and so on. An even-parity function returns the value 

True if and only if an even number of inputs are True, otherwise it returns False. 

Various research results show that the difficulty of the problem is highly dependent 

on the functions selected to construct the solution [14,7]. In particular, when only xor 

and/or eq functions are used, this problem has a needle-in-haystack property: there 

are only two possible fitness values. The search algorithm either finds a perfect 

solution or gets a solution that receives half of the mark. For example, with even-5-

parity, the number of inputs is five (each can be either True or False). There are 2
5 

different possible input combinations, hence 32 test cases. The fitness of a program is 

the number of the correct outputs for the 32 test cases. An even-5-parity constructed 

using xor and eq would either have fitness 16 or 32. 

Table 1 shows the four such problems we investigate in this work. Note that the 

random search success rates were calculated by randomly generating 1,000,000 

programs, except even-12 parity, where 4,000,000 trials were made (since it’s a more 

difficult problem). No solution with fitness 4096 was found in this set of trials. 



 

 

Problem even-5-parity even-8-parity even-10-parity even-12-parity 

Function  Set xor, eq eq eq eq 

Terminal Set x1 to x5 x1 to x8 x1 to x10 x1 to x12 

Possible fitness  16 and 32 128 and 256 512 and 1024 2048 and 4096 

# of Test Cases 32 256 1024 4096 

Random Search 

(success rate)  

0.81% 0.063% 0.0054% 0% 

Table 1: Four needle-in-a-haystack even-parity problems. 

6 Experimental Setup 

6.1 Evolutionary Algorithm 

The algorithm used for the experiments is a form of 1+λ evolutionary strategy, where 

λ=4, i.e. one parent with 4 offspring (population size 5). The algorithm is as follows: 

 

1. Randomly generate an initial population of 5 genotypes with the lowest possible 

fitness and select one (randomly) as the winner.  

2. Carry out point-wise mutation on the winning parent to generate 4 offspring; 

3. Construct a new generation with the winner and its offspring; 

4. Select a winner from the current population using the following rules: 

• If any offspring has a better fitness, it becomes the winner. 

• Otherwise, an offspring with the same fitness is randomly selected. If the 

parent-offspring pair has a Hamming distance within the permitted range (see 

Section 6.2), the offspring becomes the winner. 

• Otherwise, the parent remains as the winner. 

5. Go to step 2 unless the maximum number of generations reached or a solution 

with needle fitness is found. 

The mutation sites were selected randomly. A simple type checking is performed to 

make sure the new offspring is valid. If the gene site contains a function, it is changed 

to an alternative function. If the gene site is a connection link, it is replaced with 

another equally valid connection link.  

6.2 Control Parameters 

The genotype has 100 nodes; each has 3 genes (see Section 4). The total number of 

genes is therefore 300. Eleven different mutation rates and 7 neutrality levels were 

used in the experiments. Table 2 summarizes the parameters used for the experiments. 



 

 

Parameters Values 

Genotype Length 300  

Mutation Rate (%) on genotype 1,2,4,6,8,10,12,14,16,18,20 

Max Generation 10,000 

Neutrality Level (Hamming distance range) 0,50,100,150,200,250,300 

Population Size 5 

Number of Runs 100 

Table 2: Summary of control parameters. 

7 Results  

We do not present the results of average population fitness because they do not give 

performance information in the needle-in-haystack type of problems (where only two 

fitness values are possible). For example, with even-5-parity, the average fitness in the 

initial population is 16. This value remains as the average fitness until a solution with 

fitness 32 is found. This average fitness pattern is the same for all neutrality level and 

mutation rate implementation, hence is not useful to identify the impact of neutrality 

on the search performance. Instead, we give the results of success rate.  

For even-5-parity, all implementations (mutation rates and Hamming distances) 

have a 100% successful rate, i.e. all 100 runs find a solution (see Figure 2A). In 

contrast, even-8-parity (a harder problem) has lower success rates in some cases. In 

particular, the combination of low Hamming distance and low mutation rate has 

produced some unsuccessful runs (see Figure 2B).   

When mutation rate is 1% or 2%, a small amount of neutrality (50) is able to 

improve success rates. However, when mutation rate is 4%, a neutrality level equal to 

Hamming distance 100 is required to improve the performance. For example, 

increasing mutation rate from 2% to 4% gives Hamming distance 0 a success rate 

jump from 82% to 94%. In comparison, increasing neutrality level from 0 to 50 on 

mutation rate 4% does not improve success rate. This suggests that raising mutation 

rate has a stronger impact than raising neutrality level on the evolutionary search. The 

relationship between neutrality and mutation rates will be discussed in more details in 

Section 8.2. 



 

 

Figure 2: Success rate results. 

 

Regardless of mutation rates, increasing neutrality level beyond 150 does not 

improve or impair the performance; all of them have 100% success rate. This suggests 

that equilibrium between the benefits of exploitation and exploration is reached at this 

point. Indeed, the adaptive/neutral mutation analysis (see Section 8.1) shows that the 

exploitation/exploration ratios are very similar for all Hamming distance beyond 150 

(see Figure 3B). Increasing neutrality or mutation rates do not affect this equilibrium.   

Even-10-parity is harder than even-8-parity: there are more unsuccessful runs, 

especially when low Hamming distance values were used (see Figure 2C). Similar to 

even-8-parity, the success rate remains approximately the same after a certain 

Hamming distance value is reached (200 is the equilibrium point, see Figure 3C).  

Moreover, mutation rates are more influential in this problem: neutrality level 150 is 

required to give consistent improvement of success rates (in contrast to neutrality 

level 100 in even-8-parity).  

Even-12-parity is the hardest among all; none of the implementations has 100% 

success rate (see Figure 2D). Although not as precise as other problems, even-12-

parity reaches the equilibrium point around neutrality level 200. We also made 100 

experimental runs using Hamming distance 0 and 100% mutation rate. Among them, 

48 runs find a solution (48% success rate). This suggests that high neutrality and 

mutation rate are not sufficient for the search algorithm to find a solution to this 
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problem. Modification of other parameters, such as gene length and the maximum 

number of generation, is required to improve performance. 

The performance of the 7 different Hamming distances implementations can be 

roughly divided into two groups: the first group consists of neutrality level 0, 50, 100 

while the second group consists of neutrality level 150, 200, 250 and 300. In the first 

group, increasing mutation rates increases success rates while in the second group 

little performance improvement is gained after mutation rate exceeds 4%. 

Nevertheless, the group with higher neutrality level also gives higher success rates.  

8 Analysis and Discussion 

The experimental results for applying neutrality on four needle-in-haystack problems 

give the following patterns: 

• Neutrality does not have impact on success rates when the number of solutions 

in the search space is large (even-5-parity).  

• However, when the difficulty level is slightly increased (even-8-parity), any 

amount of neutrality improves the success rates for 1% or 2% mutation rates.  

• Increasing mutation rates also improves success rates. Yet, with a sufficient 

amount of neutrality, the success rates can be further increased. The required 

neutrality level is problem dependent; the harder the problem, the higher the 

required neutrality levels (100 for even-8-parity, 150 for even-10 & 12-parity).  

• There is an equilibrium point, which gives the exploration/exploitation balance 

corresponding to the maximum possible performance. Increasing neutrality or 

mutation rates beyond this point has little effect on the performance. 

• For more difficult problems (even-12-parity), high neutrality level and 

mutation rate is not sufficient for the evolutionary algorithm to find a solution.  

These results indicate that for this type of needle-in-haystack fitness landscapes, 

the harder the problem is (in terms of the number of solution in the search space) the 

higher the neutrality level is required to give performance improvement.  Moreover, it 

is important to note that neutrality does not impair search performance, in cases where 

it does not give performance improvement.  

8.1 Adaptive/Neutral Mutations Analysis 

We have also studied the adaptive/neutral mutation ratios for different Hamming 

distance and mutation rate implementations. Previously, we have proposed a 

hypothesis that when the adaptive/neutral mutation ratio during neutral walk is close 

to that of the fitness improvement step, the evolutionary search process is more likely 

to be successful (see Section 2). The four sets of experimental results are analyzed in 

the following subsections:  

Even-5-Parity: 

For even-5-parity, Hamming distance 150, 200, 250 and 300 implementations give the 

neutral walk adaptive/neutral mutation ratios (in dashed-lines) that are very close to 

those of fitness improvement step (in solid-lines). The difference between the two 

ratios is between 0.04 and 0.01 (see Figure 3A). Figure 2A indicates that these 

implementations have 100% success rates, which agrees with the hypothesis.  

Hamming distance 50 and 100 implementations give the ratio differences that are 

larger than those given by other Hamming distance implementations do. However,  

 



 

 

 

 

 

 

 

 

Figure 3: Adaptive/neutral Mutations ratio results.  

 

they also have 100% success rates. As suggested in [12], we believe the magnitude 

of these ratios is also important to the success of evolutionary search. 

The active/inactive gene change ratios for fitness improvements are all below 1 in 

this problem (regardless of neutrality level and mutation rates). This means that when 

a genotype of fitness 16 is transformed to a genotype of fitness 32, more inactive 

genes than active genes were changes (if the ratio is 1, an equal amount of active and 

inactive gene were changed). Such ratio pattern is also associated with 100% success 
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rate. This indicates that for this problem, as long as more inactive genes (than active 

genes) were changed during the evolutionary process, the search will be successful. 

Even-8-Parity: 

With even-8-parity, Hamming distances 150, 200, 250 and 300 give similar 

active/inactive gene changes patterns as those in even-5-parity.  The ratios for neutral 

walk and fitness improvement are close to each other; the range of the ratios is also 

between 0.6 and 0.4 (see Figure 3B). Similarly, they also have 100% success rates.  

Hamming distance-100 also gives the two ratios that are not too far from each other 

(0.02 to 0.09). The three with the largest gap (mutation rates 4%, 6%, 10%) are 

associated with a slightly lower success rates. This is consistent with our hypothesis. 

Hamming distance 50 implementation has a noticeable lower success rate when 

mutation rate is 1%, 2% or 4%. The active/inactive gene changes give the two ratios 

that are farther apart from each other. Moreover, the ratio for fitness improvement is 

higher than that in even-5-parity, i.e. more active gene changes were made. For 

example, mutation rate 1% has an active/inactive gene changes ratio of 1.07 (43/40). 

This ratio range (> 1) indicates that more adaptation (than genetic drift) was made for 

fitness improvement. Since this ratio is associated with a lower success rate, we 

believe that inactive gene change (exploration) is more important for this problem. 

Neutrality 50 with 1% mutation rate does not provide sufficient exploration, hence 

leads to a lower success rate. 

Mutation rate 2% and 4% give larger ratio gaps (0.22) than that of 1% mutation 

rate. Their success rates are also lower, which agrees with our hypothesis. Although 

the ratio difference for 6% mutation rate is similar to that of 1% mutation rate, it 

receives a higher success rate. We believe that this is because 6% mutation rate 

provides more exploration than 1% mutation rate (a lower ratio). In other words, high 

mutation rates complement neutrality level to provide exploration and achieve 

successful runs. We will discuss this more in Section 8.2.  

Even-10-Parity: 

The ratio pattern of even-10-parity is similar to even-8-parity in the following 

Hamming distance implementations: 200, 250 and 300. Figure 2C shows that they 

also have close to 100% success rates, just like those in even-8-parity. However, 

Hamming distance-150 implementation gives a different ratio pattern: the higher the 

mutation rates, the larger the ratio differences. For example, when mutation rate 1% is 

used, the active/inactive gene change ratio during neutral walk is 0.539 while the ratio 

for fitness improvement is 0.547 (a difference of 0.008). This distance increases as 

mutation rate increases. When mutation rate reaches 20%, the distance is 0.092. 

According to our hypothesis, high success rate is associated with low ratios distance. 

Indeed, Figure 2C shows that 20% mutation rate gives the lowest success rate; these 

success rates increase as mutation rates decrease. 

The active/inactive gene change associated with 100% success rate is lower than 

the previous two problems (0.4 to 0.47). This suggests that more exploration is 

required for successful search in this problem. Neutrality level 50 and 100 

implementations do not give enough inactive gene changes, hence are associated with 

lower success rates. Nevertheless, increasing mutation rate increases inactive gene 

changes (a lower ratio) and improves success rates. 



 

Even-12-Parity: 

The ratio pattern of even-12-parity has higher active gene changes than those in the 

other problems (see Figure 3D). They are also associated with lower success rates (see 

Figure 2D). This suggests that the algorithm does not provide sufficient inactive gene 

change (exploration) for the search to find a solution. Moreover, each time problem 

difficulty is increased (from even-5 to even-8 to even-10 to even-12), more inactive 

gene changes were required for the evolutionary search to be successful. This suggests 

exploration is more important than exploitation for search in needle-in-haystack type 

of space. 

8.2 Relationship between Neutrality and Mutation Rates 

The four needle-in-haystack problems show that both neutrality and mutation rates 

have a negative impact on the active/inactive gene change ratio: the higher they are, 

the lower the ratios. In other words, increasing neutrality or mutation rates increases 

inactive gene changes (more neutral mutations). Such increase of exploration also 

improves success rates. 

However, this relationship does not apply to search space that has more than two 

possible fitness values. In [12], the problem we investigated has 8 possible fitness 

values. The study indicates that higher mutation rates give higher active gene changes 

(more adaptive mutations). Such increase of exploitation is beneficial when 

population average fitness is low but detrimental when the population has become fit. 

Moreover, increasing neutrality level does not always increase exploration. 

Nevertheless, higher neutrality level always gives higher success rates. 

Yet, what is the relationship between neutrality and mutation rates? Can they 

replace each other? In the four problems we investigated, they both increase inactive 

gene changes. Thus, they complement each other in this type of needle-in-haystack 

problems to improve success rates. However, the following have to be noted: 

• There is no quantitative measurement on which neutrality level gives the same 

performance as a certain mutation rate does.  For example, 50 neutral 

mutations are about 16% of the total number of 300 genes. Yet, neutrality level 

50 with 1% mutation rate does not give the same performance as neutrality 

level 0 with 16% mutation rate (see Figure 1). 

• Once equilibrium point is reached, success rate is approximately the same 

regardless of neutrality level and mutation rate, i. e. the relationship between 

neutrality and mutation rate is irrelevant to the search performance. 

9 Conclusions 

Needle-in-haystack problems are hardly studied in the evolutionary computing 

community, possibly due to the difficulty of devising an evolutionary algorithm that 

outperforms random search. We investigated a set of four such problems and 

demonstrated that neutrality helps evolutionary algorithms to discover solutions in 

most cases. In situations where neutrality does not improve performance, it does not 

impair the search performance. This is an important message as it opens a new way to 

tackle the needle-in-haystack type of problems using an evolutionary approach.  

The analysis of adaptive/neutral mutations ratios supports the hypothesis proposed 

in our previous work: when the ratio given by neutral walk is close to that of fitness 

improvement, the evolutionary search has a high success rate. Moreover, we have 



 

extended our study on ratio magnitude and deduced that a ratio of <1 (more 

exploration than exploitation) is required for the evolutionary search to be successful 

in needle-in-haystack type of search space. 

Different levels of neutrality attain equilibrium of exploration and exploitation for 

the 4 different problems; increasing neutrality beyond such level gives insignificant 

advantage/disadvantage to the search performance. Moreover, the harder the problem, 

the higher neutrality level for its equilibrium.  

Both neutrality and mutation rates have a positive impact on exploration in the 

needle-in-haystack type of problems. Consequently, they can supplement each other 

to improve success rates. However, this is not true for other type of problems. For 

example, our previous work on a Boolean function landscape gives a different result. 

We are currently investigating other types of problems to understand better the 

relationship between neutrality and mutation rates. 
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