
Changing the Genospace: Solving GA Problems
with Cartesian Genetic Programming

James Alfred Walker and Julian Francis Miller

Intelligent Systems Group, Department of Electronics, University of York,
Heslington, York, YO10 5DD, UK
{jaw500,jfm7}@ohm.york.ac.uk

Abstract. Embedded Cartesian Genetic Programming (ECGP) is an
extension of Cartesian Genetic Programming (CGP) capable of acquir-
ing, evolving and re-using partial solutions. In this paper, we apply for
the first time CGP and ECGP to the ones-max and order-3 deceptive
problems, which are normally associated with Genetic Algorithms. Our
approach uses CGP and ECGP to evolve a sequence of commands for a
tape-head, which produces an arbitrary length binary string on a piece
of tape. Computational effort figures are calculated for CGP and ECGP
and our results compare favourably with those of Genetic Algorithms.

1 Introduction

Embedded Cartesian Genetic Programming (ECGP) is an extension of Carte-
sian Genetic Programming (CGP) incorporating ideas from Module Acquisition
[1], which allows the automatic acquisition, evolution and re-use of partial so-
lutions in the form of modules. Previous work [2] has shown ECGP to be more
computationally efficient than CGP on a range of digital circuit problems and
the speedup grows with problem difficulty.

Recently, CGP and ECGP have been applied to the Genetic Algorithm (GA)
based Hierarchical-if-and-only-if (H-IFF) problem [3]. CGP and ECGP found
solutions to the H-IFF problem more easily than published attempts using a
GA. This paper builds on the work from [3] by applying the same technique to
two GA benchmarks; the one-max problem and the order-3 deceptive problem.

The one-max problem [4] was originally used to test the generality of hill-
climbing search algorithms but is now more commonly used as a GA benchmark
[5]. The objective of the problem is to find a binary string of length n, which
contains all 1’s. The order-3 deceptive problem was proposed by Goldberg [6] and
has also been widely adopted as a challenging problem for GAs. The problem
analyses similarities in a binary string using 3-bit schemata. The aim of the
problem is to find a binary string containing all 1’s, therefore consisting only of
the 3-bit schema containing all 1’s. This schema is associated with the highest
fitness. The only other fitness rewards are associated with schemata containing
all 0’s or a single 1. This leads the GA away from the global optimum and
towards the global minimum, and is the reason why the problem is classed as
deceptive.

M. Ebner et al. (Eds.): EuroGP 2007, LNCS 4445, pp. 261–270, 2007.
c© Springer-Verlag Berlin Heidelberg 2007

262 J.A. Walker and J.F. Miller

Some work already exists on evolving GAs using alternate forms of evolu-
tionary computation. Miller and Yu [7] implemented a form of CGP to evolve
binary strings to the one-max problem when they were investigating the proper-
ties and utility of neutrality. Unlike this approach, in this paper the link between
the number of nodes encoded in the genotype and length of the binary string
is indirect and uncorrelated, we anticipate that this will allowing better scaling
on large problem instances. Ryan et al [8] have developed a technique called
GAuGE, which extends Grammatical Evolution (GE) to form a position inde-
pendent GA. GAuGE has been applied to the one-max problem and an extension
of GAuGE called LINKGAuGE, which employs tight linkage between the genes
of the GA [9], has been applied to the order-3 deceptive problem. Another GE
based approach is the meta-Grammar Genetic Algorithm (mGGA) [10], which
allows the construction of small bit-strings that are re-used when forming the
solution bit-string.

The plan for the paper is as follows: Sections 2 and 3 give an overview of
CGP and ECGP. In section 4, we describe our approach of applying CGP and
ECGP to GA problems. The details of our experiments are shown in section 5
followed by the results and comparisons in section 6. Section 7 gives conclusions
and suggestions for future work.

2 Cartesian Genetic Programming (CGP)

CGP is a form of GP based on acyclic directed graphs, which is only modified
by mutation [11]. CGP uses a fixed length representation, where the genotype
consists of a list of integers, encoding the function and connections of each node
in the directed graph. However, the number of nodes in the directed graph (phe-
notype) can vary but is bounded, as every node encoded in the genotype does
not have to be connected. This allows areas of the genotype to be inactive and
have no influence on the phenotype, leading to a neutral effect on genotype fit-
ness called neutrality. This unique type of neutrality has been investigated in
detail [11] and found to be extremely beneficial to the evolutionary process on
the problems studied.

Each node in the directed graph is encoded in the genotype by a number of
genes, determined by the arity of the function the node represents. For each
encoded node, the first gene encodes the node’s function (using values from
a lookup table) and the remaining genes encode the node’s input connections
(using the index label of the node or program input). The nodes take their
inputs in a feed forward manner from either the output of a previous node in
the directed graph or from the program inputs (terminals). The program inputs
are labelled from 0 to n-1 where n is the number of program inputs. The nodes
in the directed graph are also labelled sequentially starting from n to n+m-1
where m is the number of nodes in the directed graph. If the problem requires k
program outputs then k integers are added to the end of the genotype, each one
encoding the index of the node in the directed graph where the program output
is taken from. These k integers are initially set as pointers to the outputs of the

Changing the Genospace: Solving GA Problems with CGP 263

10

oA7

0 1 51 2 3

5

2 3 9

10

2 4 8

9

0 0 0

3

0 3 0

4

0 0 0

6

0 6 0

8

Output

Move

0

Turn

1

Randn

2

9

Prog
n

5

Frog 7

V8A

3

V8A

4

V8A

6

V8A

8

V8A

10

Prog
n

Fig. 1. CGP genotype and corresponding phenotype for the 8-bit one-max problem.
The underlined genes encode the function of each node using the lookup table: V8A(0),
Frog(1), Progn(2). See Section 4 for function details. The index labels are shown under-
neath each program input and node. The inactive areas of the genotype and phenotype
are shown in grey dashes.

last k nodes encoded in the genotype. Fig. 1 shows a CGP genotype and how it
is decoded for the 8-bit one-max problem.

3 Embedded Cartesian Genetic Programming (ECGP)

ECGP incorporates ideas from Module Acquisition [1] with CGP, to allow the
automatic acquisition, evolution and re-use of partial solutions (referred to as
modules) [2]. Thereby giving CGP a form of Automatically Defined Function
(ADF) [12]. This paper only gives a brief overview of ECGP due to space re-
strictions. For information on the technical details of ECGP, please refer to [2].

ECGP uses a modified CGP genotype making it a bounded variable length
representation (in terms of the number of encoded nodes in the genotype and
the number of genes used to encode each node). The number of nodes encoded
in the genotype decreases when sections of the genotype are encapsulated into
modules (when modules are created by the compress operator) and increases
when modules are expanded back into sections of the genotype (when modules
are destroyed by the expand operator). The number of genes used to encode the
inputs of a node in the genotype can vary as a result of either module mutation
increasing or decreasing the number of module inputs (therefore affecting the
number of genes required to encode the module), or a module being introduced
into the genotype (requiring extra genes to encode all of the module inputs).

Modules are capable of having multiple outputs, but the CGP representation
only encodes nodes with single outputs, therefore each gene is now represented
using a pair of integers rather than just a single integer, as in CGP. For each gene
encoding a node input, the first integer encodes the node index (as in CGP),
whilst the second integer encodes the function output used.

Using a pair of integers to encode each function gene allows the introduction
of node types into the ECGP representation. Node types allow the identification
of nodes encoded in the genotype representing: primitive functions (node type
0), modules that contain an original section of the genotype (node type I) and

264 J.A. Walker and J.F. Miller

Input 1 gene

fn i0 i1 fn:nt i0:o0 i1:o1

in in

Function
fn

Output
from i0

Output
from i1

Function
fn

Output o0

from i0

Output o1

from i1

Function gene

Input 0 gene

Node inNode in

Phenotype

Genotype

CGP M-CGP

Fig. 2. CGP and ECGP genotypes and corresponding phenotypes for a single node.
The components of each gene are labelled as follows: function (fn), node type (nt),
node indexes that the node inputs are taken from (i0, i1), node outputs that the node
inputs are taken from (o0, o1), index of this node (in).

modules that contain a re-used section of the genotype (node type II). Operators
act differently on the nodes encoded in the genotype depending on their node
type. Node types are encoded as the second integer of the function gene of every
node, the first integer encodes the primitive function (as in CGP) or module
(using values from a lookup table). Figure 2 illustrates the differences between
the CGP and ECGP representations.

Modules are represented using a modified ECGP representation, which also
encodes structural information about the module. Four extra integers are added
to the beginning of the module genotype to encode the module identifier, the
number of inputs and outputs of the module, and the number of nodes the mod-
ule contains. Currently, a module can only contain nodes of type 0, to prevent
bloat inside the module. Once a module is created, it is added to the module list
(a dynamic extension of the function list) and can be re-used whilst the module
remains in the module list, along with the primitive functions. The module list
is updated every generation to contain the module list of the fittest individual
in the population (in accordance with the 1 + 4 evolutionary strategy).

The module genotype can be evolved by the module mutation operators in-
dependently of the ECGP genotype. Either a structural mutation can occur,
which affects the number of module inputs and outputs, or a point-mutation
can occur, which affects the nodes contained in the module (as mutation would
occur in CGP).

4 Applying CGP and ECGP to GAs

One of the main issues faced was deciding how to apply CGP to GA problems.
A method was needed which would scale well for different length bit strings and
would not require changes to the number or type of program inputs. The method
chosen in this paper was heavily influenced by a GP benchmark problem called
the Lawnmower Problem [12]. In the lawnmower problem, GP is used to evolve

Changing the Genospace: Solving GA Problems with CGP 265

Fig. 3. The three step procedure for producing a GA bit-string from the CGP genotype,
via a set of tape head commands

a set of commands to move a lawnmower around a lawn, which has been divided
into a n x m grid of squares, where n and m denote the width and height of the
lawn respectively. The lawnmower cuts the grass in each square it visits, with a
solution being found when the lawnmower has visited every square of the grid,
therefore cutting all the grass.

In this paper, instead of evolving a set of instructions for a lawnmower on
a 2-dimensional lawn, a set of commands for a moving a tape head on a 1-
dimensional tape is evolved. Similar to the lawn in the lawnmower problem,
the tape is divided into n squares, where n is the number of bits in the GA.
Initially, all squares on the tape are blank, and the tape head is positioned in
the centre square of the tape (similar to the lawnmower starting in the centre
square of the lawn). In a single command, the tape head can move one square or
jump a number of squares in the direction the tape head is facing (left or right).
If the tape head moves off one end of the tape, it re-appears in the square at
the opposite end of the tape (just as the lawnmower would in the lawnmower
problem). When the tape head visits a square, the value of the square is changed
according to the rule:

if(square == blank || square == 1), square = 0 (1)
if(square == 0), square = 1

Therefore, the tape head behaves like the bit-flip operator found in GAs, once
a tape square does not contain a blank. Once the set of commands has been
executed, the tape head will have produced a bit-string of length n containing
the symbols: - (blank), 0 and 1, which can be evaluated as an individual in a
GA. A blank (-) in the bit-string does not contribute towards the fitness score,
as we only want to generate bit-strings containing 0’s and 1’s. An example of
the approach is shown in Figure 3.

Although the proposed approach changes the nature of the GA test problems,
it does allow us to investigate whether the proposed approach can evolve solu-
tions to GAs whilst taking advantage of the benefits of CGP, such as neutral
drift. We believe changing the dimensionality and neutral interconnectedness of
the genotype space may alleviate problems typical of GAs - early convergence
on sub-optima. Due to the nature of the approach, small changes to the genotype

266 J.A. Walker and J.F. Miller

Table 1. The parameter settings used for CGP and ECGP (* - ECGP only). The
mutation rate is expressed as a percentage of the genotype length. The operator rates
and probabilities are per generation and taken from [2].

Parameter Value
Population size 5

Genotype point mutation rate 3% (18 Genes)
Compress/Expand probability * 0.1/0.2

Module point mutation probability * 0.04
Add/Remove input probability * 0.01/0.02
Add/Remove output probability * 0.01/0.02

Maximum module size * 3 or 5 nodes
Number of independent runs 50

can produce a big change in the bit-string produced on the tape. Thereby acting
like an implicitly defined variable rate mutation operator, which could reduce
the mutation parameter sensitivity associated with GAs.

The CGP program has three program inputs, which are constrained versions
of those used in the lawnmower problem: move - moves the tape head one square
in the direction it is facing and changes the value of the new square according to
Equation 1, turn - alters the direction the tape head travels along the tape from
right to left or vice versa and random constant - a random number, r, chosen at
the start of each independent run, where 0 <= r < n. Both move and turn also
return a constant, 0, so mathematical operations can also be performed on the
program inputs.

The function set used contains the same functions as the lawnmower problem:
progn - a program node, which executes the graph connected to its first input,
followed by the graph connected to its second input and returns the result of the
second input, v8a - performs addition on its two inputs and returns the result,
and frog - moves the tape head by a number of squares specified by its input in
the direction it is facing and changes the value of the new square according to
Equation 1.

5 Experiment Details

The parameter settings used for CGP and ECGP on the 100, 250, 500, 1000,
2000 and 4000-bit one-max problem (using 100 nodes) and the 30-bit order-3
deceptive problem (using 25, 50, 75 and 100 nodes) are shown in Table 1.

The fitness functions used for both problems are the same as those used
by GA researchers. For the one-max problem, the fitness function is the total
number of ones present in the bit-string and for the order-3 deceptive prob-
lem, the fitness function is defined by the schema from [6] shown in Table 2.
Any schema containing a blank(-) is awarded a fitness score of zero.

Changing the Genospace: Solving GA Problems with CGP 267

Table 2. The schema for the order-3 deceptive problem and their fitness values

String 000 001 010 011 100 101 110 111
Fitness 28 26 22 0 14 0 0 30

6 Results

Computational effort was calculated using the formula from [3] and shown in
Equation 2 with z = 99% . The computational effort figures for CGP and ECGP
applied to the one-max and order-3 deceptive problems are shown in Tables 3
and 4 respectively. Various run statistics are also included in both tables to allow
comparisons with other techniques and to illustrate how computational effort is
a better measure to use than the average number of fitness evaluations, as it is
more resilient to outliers in the data. A modified standard deviation is used, as
the results are not normally distributed. The modified standard deviation is a
statistic in which 68% of all the results lie either side of the mean.

P (M, i) =
Ns (i)
Ntotal

, R (z) = ceil

(
log (1 − z)

log (1 − P (M, i))

)
, I (M, i, z) = MR (z) i+1

(2)

Table 3. Computational effort (CE) figures and various statistics for CGP and ECGP
applied to the one-max problem for bit-strings of various lengths (NB). The statistics
gathered include: average number of evaluations (AE), modified standard deviation
(MSD), the quartiles (Q0-Q4), the limits for mild and extreme outliers (MO and EO)
and the number of each outlier present in the data is shown in brackets.

NB AE MSD Q0 Q1 Q2 Q3 Q4 MO EO CE

C
G

P

100 1,684 1,143 197 583 895 1,906 10,405 3,891(3) 5,875(2) 5,766
250 2,175 1,598 329 659 981 1,876 13,237 3,702(8) 5,527(5) 6,405
500 4,850 4,074 321 869 1,471 5,026 47,013 11,262(4) 17,497(3) 9,606
1000 2,006 1,293 441 818 1,071 1,592 23,405 2,753(6) 3,914(4) 6,120
2000 2,146 1,165 493 1,145 1,455 2,232 15,989 3,863(5) 5,493(3) 7,203
4000 3,340 2,312 593 1,193 1,377 2,186 33,417 3,676(8) 5,165(7) 7,203

E
C

G
P

(3
)

100 5,695 5,210 201 703 1,561 6,645 45,125 15,558(4) 24,471(2) 9,610
250 8,411 7,750 237 1,169 2,589 11,758 71,745 27,642(4) 43,525(2) 16,326
500 6,505 5,117 541 1,405 2,443 5,209 68,429 10,915(5) 16,621(4) 16,326
1000 39,529 37,797 637 1,700 4,665 12,873 1,290,565 29,633(5) 46,392(4) 24,010
2000 14,186 12,151 793 2,101 3,955 10,539 169,021 23,196(7) 35,853(4) 26,888
4000 15,125 12,592 445 2,594 5,227 11,012 256,661 23,639(5) 36,266(4) 30,728

E
C

G
P

(5
)

100 11,472 10,807 301 675 1,593 5,990 220,325 13,963(6) 21,935(4) 10,248
250 16,839 15,762 353 1,254 2,487 10,378 282,553 24,064(8) 37,750(5) 15,368
500 14,061 12,787 701 1,425 3,333 7,778 183,753 17,308(7) 26,837(5) 20,810
1000 22,024 19,676 613 2,064 3,461 7,794 798,149 16,389(5) 24,984(3) 23,527
2000 19,139 17,327 661 2,329 5,407 14,366 129,725 32,422(8) 50,477(6) 32,652
4000 19,417 15,612 873 3,866 6,469 15,577 248,457 33,144(5) 50,710(4) 42,248

268 J.A. Walker and J.F. Miller

Table 4. Computational effort (CE) figures and various statistics for CGP and ECGP
applied to the 30-bit order-3 deceptive problem for various genotype lengths (ND). The
statistics gathered include: average number of evaluations (AE), modified standard
deviation (MSD), the quartiles (Q0-Q4), the limits for mild and extreme outliers (MO
and EO) and the number of each outlier present in the data is shown in brackets.

ND AE MSD Q0 Q1 Q2 Q3 Q4 MO EO CE

C
G

P

25 3,814 2,898 221 1,078 2,537 5,445 18,697 12,021(4) 18,586(1) 14,088
50 5,998 4,874 249 1,139 2,357 5,032 72,717 10,872(4) 16,711(3) 15,368
75 118,649 117,272 153 1,329 2,535 7,600 3,918,661 17,007(9) 26,413(7) 16,648
100 279,444 278,372 173 1,171 3,037 10,882 9,066,769 25,449(8) 40,015(8) 15,219

E
C

G
P

(3
) 25 10,313 9,176 261 1,036 1,859 5,172 303,133 11,376(6) 17,580(4) 12,005

50 48,374 47,126 401 1,266 2,715 8,049 1,390,337 18,224(9) 28,398(7) 16,648
75 14,571 13,782 201 912 2,155 5,569 301,137 12,555(6) 19,540(6) 12,808
100 64,164 62,735 129 1,629 2,691 7,645 1,315,681 16,669(7) 25,693(6) 15,364

E
C

G
P

(5
) 25 21,548 20,132 385 1,421 2,567 4,755 681,717 9,756(8) 14,757(7) 14,724

50 70,738 69,797 329 899 2,845 8,486 1,572,621 19,867(8) 31,247(6) 14,415
75 16,314 15,649 233 696 1,629 13,016 255,513 31,496(7) 49,976(4) 10,413
100 44,965 43,612 205 1,495 3,651 10,893 1,169,005 24,990(7) 39,087(7) 19,208

For both problems, all fifty independent runs of CGP and ECGP produced
100% successful solutions.

The computational effort figures for the one-max problem show CGP performs
better than ECGP regardless of the maximum module size, for all lengths of bit-
string. As the length of the bit-string increases, the computational effort required
by CGP increases only slightly, indicating that CGP scales particularly well with
problem difficulty. This suggests that CGP may perform comparatively better
on larger bit-strings. In ECGP, the automatic acquisition, evolution and re-use
of modules could be hindering the search performance, possibly due to a lack
of modularity in the problem. Alternatively, the problem could be too simple,
so by the time a useful module has been discovered, CGP has already found a
solution to the problem.

The results in Table 4 show the computational effort figures for CGP and ECGP
are similar, as the number of nodes increases but ECGP is capable of performing
better than CGP, depending on the maximum module size chosen. This suggests
ECGP is exploiting any modularity in the problem that makes it less suscepti-
ble to deception, such as the re-use of a module that creates the schema contain-
ing three ones. However, the average number of evaluations figures contradict the
computational effort figures on a number of occasions. On analysis, the quartiles,
Q0-Q3, for CGP and ECGP show a similar trend to the computational effort fig-
ures. However, the quartile, Q4, is quite erratic as it contains numerous mild and
extreme outliers. The outliers are the reason for the contradiction between the
average number of evaluation and computational effort figures, therefore showing
computational effort is less influenced by the presence of outliers.

In general, the computational effort figures for CGP and ECGP increase with
the number of nodes, suggesting using smaller genotypes produces better results.

Changing the Genospace: Solving GA Problems with CGP 269

Table 5. The average number of evaluations (AE) for other techniques applied to the
100-bit One-Max and 30-bit Order-3 Deceptive Problems

100-bit One-Max 30-bit Order-3 Deceptive
Technique Gen-GA Simple-GA GAuGE Gen-GA Messy-GA LinkGAuGE

AE 7,714 4,000 4,000 4,484 10,000 20,000

The larger the genotype, the longer the list of commands for the tape head.
Therefore, a small change in a large genotype could drastically alter the number
of commands for the tape head, making it harder to find a solution when you
are only a few bits away.

The results of CGP and ECGP for the two problems are compared with other
techniques found in Table 5. The generational-GA results were taken from [5],
the simple-GA and GAuGE results are approximated from [8] and the messy-GA
and LinkGAuGE results are approximated from [9].

For the 100-bit One-Max problem, CGP performs better than the other three
techniques and ECGP (with a maximum module size of 3) performs better than
the generational-GA but worse than the simple-GA and GAuGE. However, it is
notable that CGP also solves the 4000-bit One-Max problem slightly faster than
the simple-GA and GAuGE on the 100-bit One-Max problem.

Comparing the results of CGP and ECGP (with 25 nodes) and the other tech-
niques on the 30-bit Order-3 Deceptive problem, once again CGP performs better
than the other three techniques and ECGP performs better than LinkGAuGE,
and has approximately equal performance to the messy-GA but is worse than
the generational-GA.

Out of curiosity, the CGP and ECGP solutions found to the One-max problem
were applied to the one-max problem with different length of bit-strings than
those used to evolve the solution. The results showed that the majority of the
solutions found on the original problem solved the One-max problem for all
lengths of bit-string from 1-bit up to the length it was originally trained on,
and also on some longer bit-strings. In one case, a CGP solution to the 100-
bit One-max problem solved all One-max problems up to a length of 264-bits.
This implies the solution had learned something about the form of the general
solution to the One-Max problem. This was also noticed with the solutions to
the order-3 deceptive problem, except that the original solution either solved all
the order-3 deceptive problems up to a length of 30-bits, or it solved the order-3
deceptive problems that were a factor of the 30-bit problem, such as the 3, 6
and 15-bit problems. We intend to investigate this further in future work.

7 Conclusion

We have presented the application of CGP and ECGP to two classic GA prob-
lems: the one-max and order-3 deceptive problems. CGP was shown to perform
better than ECGP on the one-max problem for various length bit-strings and was

270 J.A. Walker and J.F. Miller

also shown to scale well with problem difficulty. The performance of CGP and
ECGP was similar on the order-3 deceptive problem, however ECGP is capable
of performing better than CGP but is dependant on the relationship between
the maximum module size chosen and genotype length. Comparing CGP, a sim-
ple GA, a generational GA and GAuGE on the one-max problem showed CGP
to perform the best and to scale better on problem size than the others. Com-
paring CGP, a generational GA, a messy-GA and LINKGAuGE on the order-3
deceptive problem also showed CGP to perform the best. This could possibly
indicate that the method employed in this paper not only drastically alters the
search space but also takes advantage of the benefits associated with CGP (such
as neutral drift) and transfers them to the GA.

Preliminary results for initialising the tape with different values (all 0’s or
0’s and 1’s at random) have shown a decrease in the performance of CGP and
ECGP, and will be investigated further in future work. It would be interesting to
see if the approach described in this paper can be modified to produce floating
point numbers and be applied to real-valued optimisation problems associated
with classical evolutionary programming. This approach could also be used in
a variety of real-world problems, such as protein folding and protein sequence
comparison from the field of bioinformatics.

References

1. Angeline, P.J., Pollack, J.: Evolutionary module acquisition. In: Proc. of the 2nd
Annual Conference on Evolutionary Programming. (1993) 154–163

2. Walker, J.A., Miller, J.F.: Investigating the performance of module acquisition
in cartesian genetic programming. In: Proc. of GECCO. Volume 2., ACM (2005)
1649–1656

3. Walker, J.A., Miller, J.F.: Embedded cartesian genetic programming and the lawn-
mower and hierarchical-if-and-only-if problems. In: Proc. of GECCO, ACM (2006)

4. Ackley, D.H.: A connectionist Machine for Genetic Hillclimbing. Kluwer (1987)
5. Tuson, A., Ross, P.: Adapting operator settings in genetic algorithms. Evolutionary

Computation 6(2) (1998)
6. Goldberg, D.E., Deb, K., Korb, B.: Messy genetic algortihms: Motivation, analysis

and first results. Complex Systems 3(5) (1989)
7. Yu, T., Miller, J.F.: The role of neutral and adaptive mutation in an evolutionary

search on the onemax problem. In: Late Breaking Papers at GECCO, AAAI (2002)
512–519

8. Ryan, C., Nicolau, M., O’Neill, M.: Genetic algorithms uing grammatical evolution.
In: Proc. of the 5th EuroGP. Volume 2278 of LNCS., Springer (2002) 278–287

9. Nicolau, M., Ryan, C.: Linkgauge: Tackiling hard deceptive problems with a new
linkage learning genetic algortihm. In: Proc. of GECCO, AAAI (2002) 488–494

10. O’Neill, M., Brabazon, A.: mGGA: The meta-grammar genetic algorithm. In:
Proc. of the 8th EuroGP. Volume 3447 of LNCS., Springer (2005) 311–320

11. Miller, J.F., Thomson, P.: Cartesian genetic programming. In: Proc. of the 3rd
EuroGP. Volume 1802 of LNCS., Springer (2000) 121–132

12. Koza, J.R.: Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge, USA (1994)

	Introduction
	Cartesian Genetic Programming (CGP)
	Embedded Cartesian Genetic Programming (ECGP)
	Applying CGP and ECGP to GAs
	Experiment Details
	Results
	Conclusion

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 /ENU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

