
Evolutionary Art with Cartesian Genetic Programming

Laurence Ashmore1, and Julian Francis Miller2

1 Department of Informatics, University of Sussex, Falmer, BN1 9QH, UK
emoai@hotmail.com

http://www.gaga.demon.co.uk/
2 Department of Electronics, University of York, Heslington, York, YO10 5DD, UK

jfm@ohm.york.ac.uk
http://www.elec.york.ac.uk/staff/jfmhome.htm

Abstract. Techniques from the field of Evolutionary Computation are used to
evolve a wide variety of aesthetically pleasing images using Cartesian Genetic
Programming (CGP). The challenges that arise from employing a fitness func-
tion based on aesthetics, and the benefits that CGP can provide, are investigated
and discussed. A significant piece of software was developed that places a fo-
cus on providing the user with efficient control over the evolutionary process.
Several ‘non-user’ fitness functions that assess the phenotypes and genotypes
of the chromosomes were also employed with varying success. To improve
these results, methods of maintaining diversity within the population that take
advantage of the neutrality of CGP are implemented and tested.

1 Introduction

Evolutionary art uses evolutionary computation to evolve images or aesthetically
pleasing structures. The kinds of images that can be evolved greatly vary and heavily
rely on the particular representation being used. The main difference between evolu-
tionary art and other search problems is that the fitness of an image is based on
something that is very hard to describe or maybe even to understand. The attractive-
ness of an image is also a personal thing that will differ between people. This makes
evolutionary art a very interesting topic in terms of evolutionary search. A lot of
search problems are concerned with optimisation and convergence towards a solution.
With evolutionary art the search is more exploratory, with divergence and diversity
being the key factors. There can never be a strict fitness function when assessing the
attractiveness of an image so it is the user who provides the fitness of an image in the
majority of evolutionary art. Nearly all evolutionary art programs have the same inter-
face; a number of pictures or shapes are displayed on the screen within a grid so that
the user can view the whole population at the same time. The user selects a number of
their favourite images that are then used to create the next population. There are many
different ways in which people have genetically represented images and the way in
which evolution is simulated also varies.

In this paper we use a relatively new form of Genetic Programming [1] called Carte-
sian Genetic Programming (CGP) [3]. This is the first use of this technique in evolu-
tionary art. There are several features of CGP that make it very suitable for using in
evolutionary art. These features include the way in which program outputs are func-
tionally related and the neutrality that is present in CGP.

The plan of the paper is as follows. In section 2 we review a few evolutionary art
systems that are close to that presented here. In section 3 the Cartesian Genetic pro-
gramming method is explained. Section 4 describes the implementation. In section 5
some evolved images are presented. We end with some brief conclusions.

2 Related Evolutionary Art Systems

Karl Sims was the first person to use genetic programming to evolve 2D art and in-
spired most of the currently available evolutionary art programs [5]. His most famous
work was an art installation entitled “Genetic Images” that displayed 16 images for
the public to pick their favourites from. The most aesthetically pleasing images sur-
vived and were mutated to create the next generation. The images created from this
set-up greatly vary in appearance and are curiously interesting. Each image is repre-
sented by a single LISP expression tree that outputs the colour of a pixel dependant
on its coordinates. Sims used a very rich function set, containing image-processing
functions (blur, convolution and gradient functions) as well as simple mathematical
functions. The colour in an image is introduced by functions such as color-noise and
warped-color-noise being present in the tree.

Steven Rooke has created some of the more impressive evolutionary art images,
mainly due to his inclusion of evolvable fractals in his function set [4]. The images
are represented as LISP parse-trees and are evolved using crossover and mutation on
the trees. The output from the program is interpreted by a colour mapping function
that maps the scalar values to RGB vectors. A typical population contains 150 indi-
viduals, these are initially composed of seeded (previously good genotypes) and ran-
dom individuals. Each individual in the population is given a score, the better the
score the higher the probability of it going into the next generation and having off-
spring. There is no limit to the size of the representation (other than computer mem-
ory) so highly complex trees can be evolved.

Penousal Machado has developed an evolutionary art program called NEvAr (Neu-
ral Evolutionary Art) [2]. This uses GP with a set of very simple functions. The idea
behind this is that using complex functions incorporates a bias into the search and
makes it more confined. Using only simple functions opens out the search space,
unfortunately it also increases the time taken to breed ‘good’ images. This is in con-
trast to Sims’ genetic art that used a very rich function set.

3 Cartesian Genetic Programming

Cartesian genetic programming is a form of genetic programming where the program
is represented by a directed graph of indexed nodes [3]. The graph has a set of ni in-
puts that are indexed as nodes 0 to ni-1, a set of nn nodes and a set of no outputs that
are taken from the last no nodes. Each node has a number of inputs and a function that
gives an output based on the inputs. The genotype is a list of integers that determine
the connectivity and functionality of the nodes. These can be mutated and crossed
over to create new directed graphs.

The genotype is of fixed length however the graph described by it is not. This is
due to there being expressed and unexpressed nodes in the genotype. The genotype
may contain nodes that are not connected to the output nodes so are not expressed in
the phenotype, this is called node redundancy. As well as node redundancy there is
also functional redundancy and input redundancy. Functional redundancy is where a
set of nodes implement a more complex function that could be implemented with
fewer nodes. Input redundancy is where some of the node inputs are not used by the
function of the node. This redundancy provides CGP with greater neutrality [3][6]
when compared with standard GP, and hence a very different behaviour. The pres-
ence of a genotype-phenotype mapping allows different genotypes to map to the same
phenotype, creating many plateaus in the search space. When a plateau is reached
genetic drift may occur across the plateau. Genetic drift is the changing of unex-
pressed genes, or nodes, in the genotype that may lead to a later improvement in fit-
ness when they are expressed. With a given mutation rate it may not be possible to
acquire an offspring with an improved fitness. However, if genetic drift occurs then a
later offspring may have the ability to create a fitter individual, enabling escape from
local minima.

In standard GP the evolved program only has one output (although the output
could be a vector value), in CGP it is possible to have as many outputs as necessary.
These output values can share nodes so can functionally relate to each other much
closer than outputs from several separate GP trees.

4 Implementation

4.1 Representation

In evolutionary algorithms the chromosome representation is a key factor. It has a
large influence on the success of the algorithm and can dictate the search space and
traversal through it. Different representations apply themselves better to certain
problems, choosing the wrong representation for a given problem can often lead to
bad results. The graph has two inputs, the x and y coordinates of a pixel in the image,
and three outputs, the three colour channels (red, green and blue) for that pixel. The
program represented by the chromosome maps each coordinate, based on its value, to

a specific colour, specified by the RGB values. Hence changing the functions and
connectivity of the nodes will change the colour values of each pixel, and so change
the image. The genotype is stored as an integer array with length (n*4)+3 where n is
the number of nodes. The last three integers in the chromosome are the output point-
ers for the red, green and blue colour channels.

Fig. 1. Schematic of genotype

The first node is referenced as node2 so the two inputs for the x and y coordinates can
be indexed as 0 and 1. Since each pixel position has the same equation defining its
colour mapping there will be a relationship between pixels which should make for
interesting images. The number of nodes in the chromosome is related to the com-
plexity of an image. The greater the number of nodes then the more functions that can
be used in the equation defining the image. Obviously, increasing the number of
nodes greatly increases the search space and also noise within the search space. Al-
though large chromosomes will be able to produce more complicated and interesting
images but the user may not want to spend much time evolving chromosomes, it is
important to be able to control this.

The outputs were primarily chosen to represent red, green and blue colour chan-
nels. A lot of previous evolutionary art programs have had a single output that is
mapped to colours using a colour lookup table. Using this method requires a preset or
separately determined colour-mapping table (cf. Rooke). It is much simpler to have
three outputs, one for each colour channel, so that the colour is completely defined by
the program output, rather than the output and its colour mapping. RGB is a standard
colour model and very intuitive because it uses the primary colours to pinpoint the
pixel values in the colour space. By using the RGB colour representation each chan-
nel has the same effect on the image (e.g. each value describes the brightness of a
colour). With HSB (hue, saturation, brightness) each channel has a very different
affect on the final image. By switching around the pointers very different images are
created. With RGB the different outputs can work together to produce a very inter-
esting image, in other words the whole is greater than the sum of its parts. With a
HSB mapping the outputs work against each other, they describe very different char-
acteristics of the image, removing the benefit of functionally related outputs.

In CGP each node normally defines the inputs to the node and the function only.
The functions are limited by having outputs between 0 and 255. To increase the flexi-
bility a further parameter has been added to each node which may or may not be used
by the specified function. The number of inputs to each node is determined by which
functions are allowed. It was decided to have two inputs to each node (although both
inputs need not be used by every function). Hence, each node consists of four inte-
gers.
One option was to have the last three nodes in the chromosome taken as the outputs,
as in standard CGP, but this would create several problems. This can be illustrated by

trying to evolve a black and white image; the last three nodes would have to have all
the same pointers, functions and parameters. Instead there will be three separate
pointers that can point to any node and take that value as the output. This makes it
easier to have the outputs the same value. Many of the good pictures found early on
in the development had very similar colour channels, with maybe only one or two
nodes affecting one of the channel outputs after the other outputs had been taken.
This would be a lot harder to control if each output had an extra function affecting it.
Another reason for having the output pointers separate is that from an early stage it
was obvious that control over colour is a very important factor. By having the point-
ers not linked to a function the colour channels can be rotated without swapping any
important node information.

4.2 Functions

Choosing the function set was very time consuming. It is important that there are
enough functions to be able to create complex images but not so many that there are
functions that have a negative effect on image fitness. Such functions make traversal
through the search space very laborious. Picking functions is difficult as it is very
hard to determine what effect any given function will have on an image. Early tests
using chromosomes with one node or two nodes gave indications on the utility of
certain functions. Many functions that were tested and omitted from the final set be-
cause they either had no noticeable effect or created too much “noise” in the search
space.

0: input1 | input2;
1: parameter & input1;
2: (input1 / (1.0 + input2 + parameter));
3: (input1 * input2) % 255;
4: (input1 + input2) % 255;
5: if(input1>input2) input1 - input2; else input2 - input1;
6: 255-input1;
7: abs(cos(input1)*255);
8: abs(tan(((input1%45)*π)/180.0)*255));
9: abs(tan(input1)*255)%255);
10: sqrt((input1-parameter)2 + (input2-parameter) 2); (thresholded at 255)
11: input1%(parameter+1)+(255-parameter);
12: (input1 + input2)/2;
13: if (input1>input2) 255*((input2+1)/(input1+1));else 255*((input1+1)/(input2+1));
14: abs(sqrt(input12-parameter2+ input22-parameter2)%255);

Fig. 2. Empirically chosen function set

4.3 Population

The population size is very important because all of the individuals need to be dis-
played on the screen at the same time for fair evaluation. With a large population the
images will need to be shrunk and may lose important detail. With a small population
there may not be enough variation in the images and the user will need to keep gener-
ating new populations with the same parents over and over again.. Since random
populations are relatively boring, the program initiates with a population constructed
from previously generated good chromosomes. These are loaded at random from a
‘pool’ of good genotypes and provides the user with an interesting collection of
chromosomes to begin evolution with.

4.4 Search Operators (crossover and mutation)

Applying search operators to graphs is not trivial so care has to be taken in the design
of mutation and crossover. Deciding which point to mutate is done by picking a
random point along the chromosome, the mutation rate specifies how many points are
randomly picked. When a point is picked it needs to be determined what the point
represents, whether it is a pointer, function or a parameter. If it is a pointer then it can
be mutated to a random integer between 0 and the number of the node before the
node being mutated. The function value is limited by the number of functions. The
value that the parameter can be is determined by the node function. Some functions
use a value from 0 to 255, others 0 to 50 or the parameter may be unused. Specific
colour channels can be locked to increase control over variation. To do this there
needs to be a record kept of which nodes are used by each output. If a colour channel
is selected to be locked then all the nodes that define the equation for that colour
channel must remain static. When picking a point for mutation it can be made sure
that the point is not part of any locked node. If all of the colour channels are locked
then only the redundant nodes will be mutated and the output will not change.

Fig. 3. The effect of locking the red and blue channels (locked points shown boxed).

Fig. 3 shows which points are locked when the red and blue colour channels are
locked. The red and blue output pointers are locked and all the points in the first node
are locked because the blue channel takes its output from it. It was found to be often
useful to only mutate the parameter part of the nodes, leaving the graph connectivity

and functionality unaltered. This can be easily achieved by making sure that the point
picked for mutation is always a parameter.

Crossover is not normally used when evolving graphs because it tends to be far too
destructive. Since evolutionary art does not have a well-defined fitness function and
the whole process is a lot more exploratory, having operators that disturb the geno-
type is more of a good thing than a bad. Early tests also showed that the crossover
could result in an image with the ‘form’ of one image and the colour from another, as
can be seen in Fig. 4. This is a very strong tool for achieving a desired image. It was
found that nodes near the beginning of a chromosome code for the image layout
while nodes towards the end code for the colour changes. It would be interesting to
see whether representations other than CGP also have this property.

Fig. 4. Crossover of parents (left) to produce two children with inherited features.

Crossover points are picked between whole nodes so information within the nodes is
retained. In the offspring, the nodes before this point will all come from one parent
and the nodes after that point, including the output pointers, will come from the other
parent. Genotypes of different lengths can be crossed over by making the offspring
have the same number of nodes as the largest parent. The offspring could be forced to
have the length of the shortest genotype but this makes crossover more restrictive. The
crossover point is picked from the shortest genotype and nodes before this point are
copied to the offspring. The nodes after this point will have to come from the longest
genotype.

The direction of search and the fitness of individuals is specified by the user so the
user needs complete control of the mutation rate and whether crossover occurs or not.
During autonomous evolution (see Section 4.5) the mutation rate is controlled by
using adaptive mutation. The mutation rate is quite high during the first few genera-
tions and decreases as evolution progresses. This is to avoid early convergence by
keeping the jumps through the search space quite large and to enable small refine-
ments later on.

4.5 Autonomous Evolution

The major time consuming factor in evolutionary art is the fitness evaluation, as it
requires human intervention. Having the ability to ‘autonomously’ evolve images can
greatly increase the time taken to find attractive images. In terms of aesthetics any
‘non-user’ fitness function is going to be naïve, however they can still be useful. A
randomly seeded population will nearly always appear uninteresting making it very

X =

hard for the user to know which direction to take the evolution. Using a predefined
fitness function, such as the evolving towards greater complexity (more used nodes in
the genotype) or for circular objects in the image (results from a Hough Transform
operation), often result in a population that is easier for the user to work with.

The top three images in each generation are used to seed the next, and an elitism
replacement strategy is employed. Diversity is maintained by forcing the three images
to have a certain degree of difference (calculated pixel by pixel). Any parent geno-
type that survives two consecutive generations is replaced with a different genotype
with an identical phenotype (if one is present in the population). This increases ge-
netic drift in the population and achieves improved results. This is shown most con-
vincingly when the fitness function is the Euclidean distance from a user chosen Jpeg
image. Fig. 5. shows the fitness of the top individual for 4000 generations when using
and dismissing the above technique.

Fig. 5. Graph demonstrating the benefits of genetic drift when using a ‘non-user’ fitness
function (results have been averaged over 20 evolutionary runs).

5 Results

In Fig. 6 are shown some evolved pictures from separate populations using chromo-
somes with 20 nodes and were all evolved for about 10 generations from a random
genotype. They give a good indication of the range of pictures that may be produced
in a very short space of time. Fig. 7 shows some images evolved for 500 generations
without human intervention by choosing a fitness function that is equal to the number
of nodes used in the phenotype with a bias towards various functions being used in
the chromosome. When evolving pictures there are often images that seem like they
‘carry on’ outside the boundary of the image. It is interesting to be able to see what
shapes and patterns occur around the images and to see the whole effect of the algo-
rithm that determines the picture. This can be achieved by allowing the user to enter
the start and end co-ordinates that are given to the chromosome when creating the
image. Invalid colour values are cropped to either 0 or 255. This adds to the program
by giving the user a means to further explore the images they create.

Fig. 6. Evolved images with 20 nodes from separate populations

Fig. 7. Automatically evolved images with 50 nodes

Fig. 8. Some evolved images extended to 512x512 pixels

Interesting things can happen just out of view on the normal image or the image may
show a small part of a larger and more interesting ‘structure’. Some examples of this
are shown in Fig. 8. Since some of the functions in the function set carry numerical
parameters, it is possible to iterate through different parameter values after a satis-
factory image has been obtained. In most cases small changes to parameters result in
subtly different images. These images can be animated. Some of these were found to
be very effective and gave the appearance at times of flying through the image. The
ability to animate chromosomes was initially added to the program as a way to fine-
tune an image. Since the evolutionary process is stochastic it can sometimes be frus-
trating if a chromosome continually fails to evolve to anything more interesting.

Fig. 9. Some evolved images using HSB mapping

By animating the chromosome it is possible to visualise what the possible effects of
mutating specific parameters can be. The user can select the desired frame and then
place that chromosome back into the population to continue evolution with. This is a
powerful tool because it enables manual manipulation of the chromosomes. It also
allows the user see what possible directions the evolution could be taken and gives
the user a greater understanding of how the images are created.

6 Conclusion

We have described an evolutionary art system that uses a graph based form of Ge-
netic Programming called Cartesian Genetic Programming. The method has a number
of advantages in that it allows a multi-output program that encodes for RGB or HSB.
Particular combinations of outputs can be locked by the user and the remaining out-
puts evolved. The method also uses parameters as the arguments to some primitive
functions that can be iterated to create animated art, this can be aesthetically pleasing
but also can assist the designer by showing them regions of parameter space that have
interesting visual effects. The method also benefits from the highly neutral search
possibilities that the Cartesian encoding allows.

References

1. Koza, J. R. : Genetic Programming, MIT Press, London, (1993)
2. Machado, P. and Cardoso, A. : NEvAr --- The Assessment of an Evolutionary Art Tool. In:

Wiggins, G. (Ed.). Proceedings of the AISB00 Symposium on Creative & Cultural Aspects
and Applications of AI & Cognitive Science, Birmingham, UK, 2000

3. Miller, J. F. Thomson, P. : Cartesian Genetic Programming, Proceedings of the 3rd European
Conference on Genetic Programming, Edinburgh, Springer, Berlin (2000) 121-132

4. Rooke, S. : Eons of Genetically Evolved Algorithmic Images. In: Bentley P. J. and Corne
D. (eds.): Creative Evolutionary systems, Morgan Kaufmann, San Francisco (2002)

5. Sims, K. : Artificial Evolution for Computer Graphics. Computer Graphics, Vol. 25, (1991)
319-328

6. Yu, T. and Miller, J. F. : Neutrality and the evolvability of Boolean function landscape.
Proceedings of the Fourth European Conference on Genetic Programming, Springer-Verlag,
Berlin (2001) 204-217

