
Paper category: Genetic Programming

What bloat? Cartesian Genetic Programming on Boolean problems

Julian Miller
School of Computer Science, University of
Birmingham, Birmingham, B15 2TT, UK

Telephone: +44 121 414 3710
Email: j.mill er@cs.bham.ac.uk14 3710

Email: j.mill er@cs.bham.ac.uk

Abstract
This paper presents an empirical study of the
variation of program size over time, for a form of
Genetic Programming called Cartesian Genetic
Programming. Two main types of Cartesian genetic
programming are examined: one uses a full y
connected graph, with no redundant nodes, while
the other allows partial connectedness and has
redundant nodes. Studies are reported here for
fitness based search and for a flat fitness landscape.
The variation of program size with generation does
not behave in a similar way to that reported in
other studies on standard Genetic Programming.
Depending on the form of Cartesian genetic
programming, it is found that there is either very
weak program bloat or zero bloat. It is argued that
an important factor in the analysis of the change of
program length is neutral drift, and that if genotype
redundancy is present, the genetic neutral drift
simultaneously improves search and compresses
program code.

1 INTRODUCTION
In many reported forms of Genetic Programming (GP)
special measures need to be taken to counteract the tendency
of programs to rapidly grow in size over time. The latter is
usually referred to as bloat. Uncontrolled bloat leads to time
consuming fitness evaluation and also reduces the efficiency
of the search operators. Consequently researchers have
usually imposed some form of parsimony pressure to
counteract this effect. This paper describes the variation of
program size over time for a recently developed form of
graph-based genetic programming called Cartesian Genetic
Programming (CGP) [21][22].

The motivation for this paper grew out of the authors'
observation that program bloat does not appear to occur in
CGP. In fact it is found that programs only increase in size
if it is necessary to improve their fitness. The paper sets out
to try to understand this fact. A number of questions were
immediately apparent. Does the imposition of a maximum
program size in CGP provide a compression pressure that
counteracts bloat? Is the form of mutation that is employed
exerting a parsimony pressure?

At the outset the authors' intuition suggested that an
important consideration in answering these question was the
presence in CGP of genetic redundancy. In CGP there is a
genotype-phenotype mapping stage and program nodes may
be specified in the genotype that do not code for anything in
the phenotype (the actual program). Moreover, these
redundant nodes are not even evaluated during the
assessesment of a program's fitness. The mutation operator
can switch nodes into and out of the phenotype during the
evolutionary process. It has been shown elsewhere that the
presence of these redundant nodes considerably enhances
the ability of the evolutionary algorithm to search
effectively [22][30]. To investigate this intuition it was
necessary to investigate the behaviour of a form of CGP in
which redundant nodes were eliminated i.e full y-connected
graphs. Attendant on this requirement was development of
another mutation operator, in addition to the simple point
mutation that would insert or delete program nodes. This in
turn meant that both genotypes and phenotypes would have
to have variable size. The simplest way to investigate
whether point mutation was naturall y parsimonious was to
examine the case of a flat fitness landscape. Would the
evolutionary algorithm be biased toward small programs on
a flat landscape? It is these questions and intuitions that are
investigated and explored in this paper.

The plan of the papers is as follows. Section 2 gives a brief
survey of the program bloat phenomenon, and its relation to
non-coding regions. Section 3 gives a description of CGP
and its mutation operators. The experiments are described
in section 4. Section 5 lays out the experimental findings.
Some analysis and discussion of the results and how they
relate to the behaviour of other GP paradigms is given in
Section 6. In Section 7 conclusions are given. The paper
concludes with a brief discussion of further work in section
8.

2 RELATED WORK
The problem of the rapid growth of programs produced by
Genetic Programming is very well known and is generall y
referred to as program bloat [1][2][4][8][10][11][17][18]
[27][28][29]. Unfortunately this growth in program size is
almost always due to the growth of pieces of sub-code that

Paper category: Genetic Programming

have li ttle or no semantic effect. Various ideas have been
proposed to explain this phenomenon. Originall y it was
viewed as hitchhiking [29] which viewed inactive code
being propagated by crossover, by being attached to fitter
parents. Another theory was that bloat arose because it
provided a protection from the deleterious effects of
crossover by increasing the number of crossover points that
have no semantic effect on an individual [4][17][18][25].
Another argument put forward was that of removal bias
[27][28]. This suggested that there was a natural bias toward
large subtree growth because removal of the whole
redundant subtree would be disruptive, while enlarging the
inoperative inflated code would not change the fitness of the
program. Many of the arguments have focussed on the
crossover operator though there is no clear reason why these
theories might not be similarly applied to mutation operators
also. There has been work done that suggests that subtree
crossover is particulary at fault and mutation to a smaller
extent [2].

Much work has focused on the intron view of bloat. Introns
are extraneous pieces of code that do not contribute to
program fitness. One approach to alleviate the intron
problem has been to deliberately insert introns, i.e. insert
explicitly defined introns [16]. In register machine code GP
this can have the effect of automatically supressing the
growth of implicit introns. Recently however, work has
been done that suggests that program growth is not caused
by intron growth but rather intron growth is a consequence
of program growth. The program growth is linked to the
implicit bias in tree-based GP toward deep crossover points
because disruption to subtrees near to the program root are
li kely to be deleterious [15]. This fits with the findings in
[19] which showed that throughout the evolutionary run the
nodes closest to the root hardly ever change from those in
the initial population. Possibly the most general argument
advanced is that "fitness causes bloat" which asserts that
program bloat occurs largely because there are many more
larger programs with higher fitness so the small initial
programs drift in this direction [9][10][11][12][13]. This
theory has matured to the point that now such growth is
seen as an inevitable consequence of evolving variable
length program representations for two main reasons: 1)
search operators with no explicit length bias tend to sample
bigger programs (see above), and 2) competition within
populations favours longer programs as they can usually
reproduce more accurately.

The presence of implicit introns in genetic programming is
almost universall y regarded as bad, yet some researchers
have argued that the spread of introns can actuall y be
beneficial in that they provide a natural kind of code
compression [17]. It was partly to alleviate the drawbacks of
implicit introns that they introduced explicitly defined
introns. However recent applications of this idea to tree-
based sytems has been less successful, and it seems that
supressing certain types of implicit introns is more
beneficial to search [26]. One early finding has shown that
with genetic algorithms, non-coding regions actually
improve the performance [14]. More recent studies have

indicated that introns can improve performance but only
with the imposition of a parsimony function [5].

3 CARTESIAN GENETIC
PROGRAMMING

Cartesian Genetic Programming (CGP) was first formerly
proposed in [22]. It shares some characteristics with Parallel
Distributed GP (PDGP) [24]. It independently originated
from work concerned with the design of digital circuits
using evolutionary algorithms [20].

In CGP a program is represented as a rectangular array of
nodes. The nodes represent any operation on the data seen at
its inputs, and may implement any convenient programming
construct (if, switch, OR, * etc.). All the inputs, whether
primary data, node inputs, node outputs, or program outputs
are sequentiall y indexed by integers. The functions of the
nodes are also sequentiall y indexed. The chromosome is just
a linear string of these integers. The idea is best explained
with a simple symbolic regression example borrowed from
[8]. Fig 1 shows the genotype and the corresponding
phenotype for a program which implements both the
difference in volume between two boxes V1 - V2, and the
sum of the volumes, V1 + V2 , where, V1 = X1X2X3, V2

=Y1Y2Y3. The particular inputs corresponding to the
dimensions of the two boxes X1, X2, X3, Y1, Y2, Y3, are
labelled 0-5 and are seen on the left. The function set is
{ 0=plus, 1=minus, 2=multiply} . The functions are shown in
bold in the genotype and are seen inside the nodes. The
program outputs are taken from node outputs 12 and 13. V1

and V2 are each re-used in the calculation of the two outputs.
The inputs of columns of nodes can only be connected to the
outputs (or program inputs) which are on the left. A node
may have its imputs connected to the output of another node
provided that the latter is no more than a certain number of
columns back. This parameter is called levels-back. Using a
levels-back =1 forces maximum re-use of individual node
outputs but hampers large scale re-use of collections of
nodes. On the other hand if levels-back = maximum number
of columns (and there is only a single row) unrestricted
connectivity of nodes is allowed. In this representation an
output of a node may not be connected to the input of
another node in the same column. Primary inputs (0-5) are
allowed to connect to any node without restriction.
An important aspect of the representation is that some genes
may not be expressed in the phenotype program. In CGP the
distinction between non-coding genes and coding genes is
purely in whether at that particular instance the node genes
associated with the node's output are active because the
node is connected between the program inputs and outputs.
Genes can be made active by mutation at one point and then
later made inactive. It is important to note that inactive
genes are not processed when the fitness of a program is
assessed. Of course introns can still occur in the phenotype
but they do not appear to cause a problem.

Paper category: Genetic Programming

(b)

Figure 1: An example CGP genotype (a) and phenotype (b).
Note that the nodes in grey do not form part of the
phenotype.

In the example shown all the nodes have the same number
of inputs; this is a convenience, not a fundamental
requirement. Thus the representation could be readily
generalised to accommodate variable number of inputs and
outputs for each node. Since nodes do not have to be
connected the number of nodes used can vary from 0 to the
maximum number available. Thus bounded variable length
programs are allowed. One of the other advantages of this
representation of a program is that the chromosome
representation used is independent of the data type used for
the problem, as the chromosome consists of addresses where
data is stored. Point mutation is very simple; one merely has
to allow changes to the genes which respect either the
functional constraints or the constraints imposed by levels-
back. Note that output connections can also be mutated (e.g.
12 and 13 in Fig 1). In this study two other forms of
mutation have been defined: insert-node and delete-node.
Insert-node selects a position at random and inserts a new
node with a randomly chosen function (from those allowed)
and randomly chosen input connections. The delete-node
operator randomly selects a node and removes it. After
either operator is applied to the genotype the node output
numbers are incremented or decremented to the right of the
inserted or removed node so that the graph structure is
disrupted as little as possible. This is illustrated in Fig 2.

 0 1 2 3 0 0 3 4 2 6 2 2 8 5 2 7 5 1 9 10 0 9 10 1 8 9 2 12 13

 0 1 2 3 0 0 3 4 2 8 5 2 7 5 1 9 9 0 9 9 1 8 9 2 12 13

 (a)

 0 1 2 3 0 0 3 4 2 6 2 2 8 5 2 7 5 1 9 10 0 9 10 1 8 9 2 12 13

 0 1 2 3 0 0 3 4 2 7 0 1 6 2 2 8 5 2 7 5 1 10 11 0 10 11 1 8 10 2 13 14

 (b)

Figure 2: Genotype before and after node deletion (a), and
before and after node insertion (b). Altered genes are
indicated.

4 EXPERIMENTS
In this paper a special case of CGP appropriate for Boolean
problems is employed where the data type is binary and the
network is allowed to be feed-forward only. The problem
chosen for this study is the three-bit multiplier which
multiplies two three-bit binary numbers and outputs the
corresponding six-bit binary number. The function set
chosen for the experiments was {AND, EXOR, IF,
IF*} . All function nodes were assumed to have arity 3 (in
the case of AND and EXOR the third input was ignored). The
three input node IF with inputs A, B, C, implements the
following function: if C then B, else A. The function IF*
implements: if C then NOT B, else A. The three-bit
multiplier problem was chosen for this study for two main
reasons: it is a very challenging problem, and it requires a
moderate number of nodes (at least 21 using the above
function set).
All the experiments performed in this paper used a single
row of nodes with levels-back set to the number of columns.
Two forms of Cartesian programs were investigated. The
first was the normal representation already described. The
other was fully-connected. In this representation every node
is connected to the node on the immediate left (excluding
the leftmost node which can only connect to the program
inputs). Thus at least one non-redundant node input was
connected to its left neighbour. If this connection was
mutated by point-mutation then one of the node inputs was
randomly chosen to be the new left-neighbour connection
and the other subjected to the point mutation. This was
implemented so that connections would be free to move
rather than remaining fixed throughout the evolutionary run.
If the insert-node added a node j between successive nodes i
and k then j had to have an input connected to the output of i
and the input of node k that had formerly been connected to
the output of node i would then connect to j. All other nodes
would be connected as before the node insertion was carried
out. Thus a full y-connected graph would be obtained with
the most similarity to the original. If delete-node was
applied (so that node k was removed) then the remaining
graph (from node j rightwards) would move left and one of
inputs of node j would be randomly chosen to connect to i.
Clearly, if either insert/delete-node operators were applied
then the number of columns would also be changed. Thus
variable length structures were employed.
The evolutionary algorithm used was of (1+1) evolutionary
strategy. In each iteration a genotype was randomly chosen
with fitness equal or greater to the previous best (the new
parent). This was then mutated to form the child. According
to the mutation rate (2% was chosen for all experiments) a
certain number of genes would be mutated, and only 50% of
these genes underwent point-mutation. The remaining genes
chosen for mutation then underwent insert/delete-node
mutation with equal probabilit y.

 0 1 2 3 0 0 3 4 2 6 2 2 8 5 2 7 5 1 9 10 0 9 10 1 8 9 2 12 13

(a)

 2

 *
1

0

6
 2

 *2

6

9
 0

 +10

9

12

 0

 +0

3

7

 2

 *5

8

10
 1

 -10

9

13

5 2

 *
4

3

8
 1

 -5

7

11

 2

 *9

8

14

4
3
2

1

0

13

12

Paper category: Genetic Programming

5 RESULTS
In the first series of experiments the population was
initiali sed with full y connected programs of 100 nodes.
Three scenarios were examined. Scenario 1 allowed only
fully connected graphs with all three mutation types: point,
insert-node, delete-node. This is referred to as full y-
connected/all. Scenario 2 did not require that graphs after
the initial population be full y-connected . All three mutation
types were again used. The third scenario again did not
require graphs to be fully connected after the initial
population but only employed point mutation. One hundred
runs were carried out in each scenario with 50,000
generations. It is important to note that the full y-connected
scenario the size of the program (number of active nodes) is
the same as the total number of nodes. In the second
scenario the total number of nodes can change (due to the
action of insert/delete-node mutation), however not all
nodes are active (i.e involved in the phenotype). In the last
scenario however the total number of nodes is fixed at 100
but the number of active nodes can vary between 0 and the
maximum value (100). Graphs showing the variation of
program size with generation for various Boolean functions

are shown in Figs 3, 4 and 5.

Figure 3: Variation of program size with generation for
three-bit multiplier under various mutation operators.

Observing the behaviour in scenario 1, it is seen that there is
a fairly slow bloat. It is much less than the near quadratic
bloat familiar in certain forms of standard tree-based GP
[13]. In scenario 2 there is a rapid decrease in phenotype
size which is followed by a slow increase. However the
genotype increases in size much more rapidly and without
an intial decrease. In scenario 3, again there is a rapid
decrease in phenotype size to an almost constant value. In
scenario 2 there is a higher probabilit y that a node deletion
will result in poorer fitness than a node insertion. If a
mutation results in an active node being deleted it wil l be
very disruptive to the phenotype. However inserting a node
may have no effect as it may not become active. Since
genotypes with more inactive nodes have the same fitness
there is a chance that it wil l be chosen to replace the parent
genotype.

Figure 4: Variation of program size with generation for
even-five parity under various mutation operators.

Figure 5: Variation of program size with generation for 6-
mux under various mutation operators.

This may explain the genotype growth in scenario 2. In
other studies using CGP [30] [31] it has been shown that by
assisting neutral drift, genotype redundancy allows a greater
exploration of phenotype space and hence leads to higher
fitness. In scenario 2 the algorithm can increase the
redundancy by increasing the total length of the genotype
which increases the opportunity for neutral drift. In scenario
1, neutral drift is stil l possible but only by increasing the
size of non-coding sections of phenotype (rather li ke
implicit bloat in conventional tree-based GP). In scenario 3,
where only the point mutation is operative, average program
size remained almost constant with time. In scenario 2 data
was collected on the behaviour of the largest and smallest
eventual genotypes and their corresponding phenotype
lengths. This is shown in Figs 6 and 7. Note, data was
collected at each fitness improvement.

0

50

100

150

200

250

300

350

0 10000 20000 30000 40000 50000

generation

av
er

ag
e

si
ze

 o
f

b
es

t scenario 2: total/all

scenario 1: fully-connected/all

scenario 2: active/all

scenario 3:active/point

0

50

100

150

200

250

300

0 10000 20000 30000 40000 50000
generation

av
er

ag
e

si
ze

 o
f

b
es

t

scenario 2: total/all

scenario 1: fully-connected/all

scenario 2: active/all

scenario 3:active/point

0

50

100

150

200

250

300

0 10000 20000 30000 40000 50000
generation

av
er

ag
e

si
ze

 o
f

b
es

t

scenario 2: total/all

scenario 1: fully-connected/all

scenario 2: active/all

scenario 3:active/point

Paper category: Genetic Programming

Figure 6: Variation of genotype size with generation for two
extremal runs under point, insert-node, and delete-node
mutation operators (scenario 2)

Figure 7: Variation of phenotype size with generation for
two extremal runs under point, insert-node, and delete-node
mutation operators (scenario 2)

Figures 6 and 7 are quite revealing. In the run that
eventually produced the largest genotype (black triangles)
the phenotype decreases much more rapidly from its initial
size (100 nodes) than the other run. Consequently it became
even more probable that the node insertion operator would
be less disruptive than the deletion operator and hence more
redundant nodes would be inserted into the genotype and it
would begin to bloat. In the experiments described above
the average fitness of the best in population was measured.
The results are shown in Figure 8.

The average fitness of the initial population is, of course, the
same in all scenarios (241.51, not shown). After 20000
generations differences between the three scenarios become
statisticall y significant. Scenario 3 gives the highest average
fitness, scenario 2 is next and scenario 1 is worst. Clearly
evolving full y-connected graphs is considerably less
effective than allowing genotypes that include redundant
nodes. Why should this be? It has been already pointed out
that the proportion of programs with a given fitness is
approximately constant for a wide range of program
lengths[9][10][11][12][13]. Since the total number of
programs rises rapidly with length, the number of programs
with a given fitness must also increase rapidly. Thus one

should expect larger programs to be favoured. If this
argument applies equally to graphs in CGP then one would
expect the size of all the graphs in the experiments
described above to increase rapidly, and possibly with a
near quadratic dependence on generation [13]. This clearly
does not happen. The fact that in scenario 3 the programs all
have an upper bound (100 nodes) does not appear to supress
program growth after the initial rapid drop (Figs 3 and 4).
There is still plenty of room to grow from about 40 nodes,
yet program size remains approximately constant with time.

Figure 8: Variation of fitness with generation for three-bit
multiplier under various mutation operators (error bars are ±
standard deviation)

In molecular evolution in biology Kimura [7] has observed
that nearly all mutations result in genotypes with the same
fitness, and that genetic drift is a large causative factor for
large phenotypic diversity. The experimental results shown
here support the idea that neutrality is also a factor in the
tendency for program length to increase with evolutionary
step. It may be that the genetic drift that leads to fitness
improvement is so important that in Cartesian GP external
bloat occurs in the redundant code thus automaticall y
compressing the phenotypic code (scenarios 2 and 3 above).
It might however, be argued that perhaps the point mutation
operator introduced a parsimony pressure that counteracted
the natural tendency of programs to bloat. In order to test
this and further shed light on the above arguments, the
experiments were run again, but this time with fitness
switched off (the fitness function returned 1 for all
genotypes). The results are shown in Fig 9.

0
100
200
300
400
500
600
700

0 20000 40000

Generation

G
en

o
ty

p
e

si
ze

 (
n

o
d

es
)

280

290

300

310

320

330

340

350

360

370

0 10000 20000 30000 40000 50000

generation

av
er

ag
e

fi
tn

es
s

of
 b

es
t

scenario 2: all

scenario 3: point

scenario 1: fully-connected/all

0

20

40

60

80

100

120

0 20000 40000

Generation

P
h

en
o

ty
p

e
si

ze
 (n

o
d

es
)

Paper category: Genetic Programming

Figure 9: Variation of program size with generation under
various mutation operators for flat fitness landscape

Firstly in the experiments that involve variable length
genotypes (scenarios 2 and 3) the size of the genotype varies
around the initial figure, though there is a slight tendency
for the size to very slowly increase. The cause of this isn't
clear, it may be analogous to Brownian motion. It could also
be due to the slight non-randomness in the pseudo-random
number generator used (evolution with flat fitness landscape
is very sensitive to this). In scenarios 2 and 3 once again a
rapid contraction of phenotype size occurs. Subsequently
the size tends to a constant value. In the case of scenario 3
this value is approximately 35 nodes. In scenario 2 this
value is approximately 30 nodes. Immediately below the
plot of active size in scenario 3 is seen the plot of average
active size under point mutation (triangular symbols) when
the populations are not initiali sed to programs with 100
fully-connected nodes (instead 100 nodes is the maximum
allowable size). Clearly even when initialised to full y-
connected nodes the point mutation operator quickly
reduces the average size of the phenotypes to that of
randomly initiali sed populations. Since the average size
remains approximately constant it can be inferred that point
mutation is an unbiased operator and does not exert any
parsimony pressure on randomly initialised populations.

The minimum number of nodes required to build the three-
bit multiplier using the function set {AND, EXOR, IF,
IF*}appears to be 21 [23]. Thus in all the experiments so
far described the allowed number of nodes was greatly more
than is required. It was interesting to examine how the
program size might evolve under point mutation if initially
the average size was less than 21. Larger programs would
then be favoured by the algorithm as they would be the
correlated with an increase in fitness.

Two further experiments were carried out (each 100 runs
and 4% mutation) to examine the average size of the best in
population. A higher mutation rate was chosen because 2%
would have only allowed one gene in each population
member to be mutated per generation. In one set of runs the
initial population consisted of 30 full y-connected nodes. In
the other the population was initialised randomly with a

maximum size of 30 nodes. This gave an average phenotype
size of 15.21 nodes. The results are plotted in Fig 10.

Figure 10: Variation of program size with generation under
point mutation and different initiali sation conditions with a
maximum of 30 nodes

Once again a rapid decrease in average size is observed
when the programs are initiali sed to be 30 nodes. Its
smallest average size however remains a little larger than
when the population is randomly initiali sed. In both
scenarios there is a slow increase in average program length
that appears to level off at about 22 nodes.

6 DISCUSSION
The view that sees neutral drift as a causative factor in
program bloat has received littl e attention in the literature.
Programs that have varying amounts of junk code within
them all have the same fitness. Evolutionary algorithms,
unlike strict hill climbers (which don't exhibit bloat [13]), do
not typicall y demand that promotable programs (to the next
generation) have an improved fitness, thus they may accept
equally good solutions (i.e. fitness neutral) or even slightly
worse solutions. Consequently, if there is a mechanism that
can create neutral solutions a genetic drift process will
occur, particularly during periods of no fitness improvement
(which is when implicit bloat can be at its worse [16]). In
program representations that do not distinguish genotype
from phenotype (i.e standard tree-based GP) this process of
drift must largely occur by the insertion of junk code. In
other work [30][31] it has been shown that genetic drift is
highly beneficial in CGP as it allows constant innovation
and removes genetic stagnation. This is also observed in
other systems [3][6]. However genetic drift with implicit
introns appears to cause stagnation and supresses constant
innovation. One advantage of making a distinction between
genotype and phenotype is that the exploratory nature of
genetic drift can occur mainly in fitness neutral space and
only occasionally affect phenotype space. This means that
there is no penalty associated with the neutral exploration as

10

30

50

70

90

110

0 500 1000 1500 2000

Generation

av
er

ag
e

si
ze

scenario 3:active/point

scenario 2: active/all

scenario 2: total/all

scenario 1: fully-connected/all

12

17

22

27

32

0 50000 100000 150000 200000

Generation

av
er

ag
e

si
ze

initially fully connected

initially not fully connected

Paper category: Genetic Programming

it is never evaluated when the fitness of a program is
calculated. The argument that program bloat provides a
protective mechanism for the destructive effects of both
crossover and mutation (i.e. it is a good thing) applies
equally well to explicit redundancy. Thus one can take
advantage of it in CGP without paying the penalty of
evaluating it. To some extent one can see full y-
connectedness as an invitation for program bloat and it is
reall y diff icult to see any virtues it may have over
representations that allow explicit code redundancy.

Standard CGP (without insert/delete-node operators) has a
bounded program size. However this does not seem to be a
large factor in program size suppression as in a flat fitness
landscape the average size of the programs is always a
fraction of the maximum bound (see Figs 9 and 10). Clearly
it would be a problem in a fitness based search if the bound
chosen was less than the minimum size to construct a
correct program. A suggested remedy for this is given in the
further work section.

7 CONCLUSIONS
This paper has briefly surveyed the published literature on
the evolution of program size and contrasted the reported
behaviour with that of new form of genetic programming
called Cartesian Genetic Programming. Experiments
performed indicate that implicit intron growth is not a
problem and no measures need to be taken to suppress it (at
least for some Boolean problems). Evidence has been
provided of the unbiased nature of the mutation operator by
examining the behaviour of the programs under evolution in
a flat fitness landscape. The central concept of the work is
that allowing unconnected program nodes is very useful and
improves the effectiveness of the search without having to
be evaluated in the fitness function. Such representations
benefit from explicit introns which allow program
exploration through genetic drift.

8 FURTHER WORK
The question as to which kinds of expli cit introns are best
and why, and their role in suppressing bloat and allowing
innovation needs more detailed investigation. Variable
length program representations have an obvious advantage
over bounded length representations (standard CGP) in that
one can start the evolution with relatively small programs
that consume little memory and are quick to process.
However the work of this paper definitely implies that
allowing mutation operators to be the mechanism for this
length variability is liable to produce poorer fitness
improvement and extra processing. Instead one could
introduce length variability by inspecting the phenotypic
length and, if it became "too close" to genotypic length, then
increase genotypic length by randomly introducing program
nodes. The investigation of this remains for the future.

Acknowledgments

Many thanks to Tina Yu, Jon Rowe and especially Nick
McPhee for their comments and suggestions for
improvement.

References

1. L. Altenberg (1994). Emergent phenomena in genetic
programming. In A. V. Sebald and L. J. Fogel (eds.),
Evolutionary Programming: Proceedings of the Third
Annual Conference, 233-241. World Scientific
Publishing.

2. P. J. Angeline (1998). Subtree crossover causes bloat.
In J. R. Koza et al (eds.), Genetic Programming 1998:
Proceedings of the Third Annual Conference, 745-752.
Morgan Kaufmann.

3. L. Barnett (1998). Ruggedness and Neutralit y - the
NKp family of Fitness Landscapes. In: C. Adami, R.
Belew, H. Kitano, and C. Taylor (eds.) Proceedings of
the Sixth International Conference on Artificial Life,
18-27. MIT Press.

4. T. Bli ckle and L. Thiele (1994). Genetic programming
and redundancy. In J. Hopf (ed.), Genetic Algorithms
within the Framework of Evolutionary Computation
(Workshop at KI-94), Saarbrücken), 33-38. Max-
Planck-Institut für Informatik (MPI-I-94-241).

5. D. S. Burke, K. A. De Jong, J. J. Grefenstette, C. L.
Ramsey, and A. S. Wu (1998). Putting More Genetics
into Genetic Algorithms. Evolutionary Computation,
Vol. 6, No. 4, 387-410.

6. M. A. Huynen (1996). Exploring Phenotype Space
through Neutral Evolution. Journal of Molecular
Evolution Vol. 43, 165-169.

7. M. Kimura (1968). Evolutionary Rate at the Molecular
Level. Nature Vol. 217. 624-626.

8. J. R. Koza (1992). Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MIT Press.

9. W. B. Langdon (1998). The evolution of size in
variable length representations. In 1998 IEEE
International Conference on Evolutionary
Computation, 633-638. IEEE Press.

10. W. B. Langdon, and R. Poli (1998). Fitness Causes
Bloat: Mutation. In W. Banzhaf, R. Poli , M.
Schoenauer, and T. C. Fogarty (eds.), EuroGP'98: First
European workshop on Genetic Programming, 37-48.
Springer-Verlag.

11. W. B. Langdon, and R. Poli (1998). Why Ants are
Hard. In J. R. Koza et al (eds.), GP'98: Proceedings of
the Third Annual Genetic Programming Conference,
193-201. Morgan Kaufmann.

12. W. B. Langdon, T. Soule, R. Poli , and J. Foster (1999).
The Evolution of Size and Shape. In L Spector, W. B.
Langdon, U-M. O'Reill y, P. J. Angeline (eds.),

Paper category: Genetic Programming

Advances in Genetic Programming Vol. 3, 163-190.
MIT Press.

13. W. B. Langdon (2000). Quadratic Bloat in Genetic
Programming. In D. Whitley, D. Goldberg, E. Cantú-
Paz, L. Spector, I. Parmee, and H-G Beyer, GECCO-
2000: Proceedings of the Genetic and Evolutionary
Computation Conference, 451-458. Morgan Kaufmann.

14. J. R. Levenick (1991). Inserting introns improves
genetic algorithm success rate: Taking a cue from
biology. In R. K. Belew and L. B. Booker (eds.),
Proceedings of the Fourth International Conference on
Genetic Algorithms, 123-127. Morgan Kaufmann.

15. S. Luke (2000). Code growth is Not Caused by Introns.
In GECCO-2000: Late Breaking Papers, 228-235.
Morgan Kaufmann.

16. P. Nordin, F. Francone, and W. Banzhaf (1995).
Explicity defined introns and destructive crossover in
genetic programming. In Peter J. Angeline and K. E.
Kinnear Jr. (eds.), Advances in Genetic Programming
Vol. 2, 111-134. MIT Press.

17. P. Nordin, and W. Banzhaf (1995). Complexity
compression and evolution. In L. Eshelman (ed.),
Genetic Algorithms: Proceedings of the Sixth
International Conference(ICGA95), 310-317. Morgan
Kaufmann.

18. N. F. McPhee and J. D. Miller (1995). Accurate
replication in genetic programming. In L. Eshelman
(ed.), Genetic Algorithms: Proceedings of the Sixth
International Conference (ICGA95), 303-309. Morgan
Kaufmann.

19. N. F. McPhee and N. J. Hopper (1999) Analysis of
genetic diversity through population history, In W.
Banzhaf, J. Daida, A. E. Eiben, M. H. Garzon, V.
Honavar, M. Jakiela, and R. E. Smith: Proceedings of
the Genetic and Evolutionary Computation Conference
(GECCO99), 1112-1120. Morgan Kaufmann.

20. J. F. Miller, P. Thomson, and T. C. Fogarty (1997).
Designing Electronic Circuits Using Evolutionary
Algorithms. Arithmetic Circuits: A Case Study. In D.
Quagliarella, J. Periaux, C. Poloni and G. Winter (eds.),
Genetic Algorithms and Evolution Strategies in
Engineering and Computer Science: Recent
Advancements and Industrial Applications, chapter 6.
Wiley.

21. J. F. Miller (1999). An empirical study of the eff iciency
of learning Boolean functions using a Cartesian Genetic
Programming Approach, In W. Banzhaf, J. Daida, A. E.
Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and R.
E. Smith (eds.), Proceedings of the Genetic and
Evolutionary Computation Conference (GECCO99),
1135-1142. Morgan Kaufmann.

22. J. F. Miller and P. Thomson (2000). Cartesian Genetic
Programming. In R. Poli, W. Banzhaf, W. B. Langdon,
J. F. Miller, P. Nordin, T. C. Fogarty, (eds.),Third
European Conference on Genetic Programming.

Lecture Notes in Computer Science, Vol. 1802, 121-
132. Springer-Verlag.

23. J. F. Miller, D. Job, and V. K. Vassilev (2000).
Principles in the Evolutionary Design of Digital
Circuits -- Part I. Journal of Genetic Programming and
Evolvable Machines, Vol. 1, No. 1, 8-35. Kluwer
Academic.

24. R. Poli , (1997). Evolution of graph-like programs with
parallel distributed genetic programming. In T. B� ck
(ed.), Genetic Algorithms: Proceedings of the Seventh
International Conference (ICGA96), 346-353. Morgan
Kaufmann.

25. J. Rosca (1996). Generality versus size in genetic
programming. In J. R. Koza et al (eds.), Genetic
Programming 1996: Proceedings of the First Annual
Conference, 381-387. MIT Press.

26. P. W. Smith and K. Harries (1998). Code growth,
explicitl y defined introns, and alternative selection
schemes. Evolutionary Computation, Vol. 6, No. 4,
339-360.

27. T. Soule, J. A. Foster, and J. Dickinson (1996). Code
growth in genetic programming. In J. R. Koza et al
(eds.), Genetic Programming 1996: Proceedings of the
First Annual Conference, 215-223. MIT Press.

28. T. Soule (1998). Code Growth in Genetic
Programming. PhD thesis, University of Idaho.

29. W. A. Tackett (1994). Recombination, Selection, and
the Genetic Construction of Computer Programs. PhD
thesis, University of Southern California.

30. V. K. Vassilev, and J. F. Mill er (2000). The Advantages
of Landscape Neutrality in Digital Circuit Evolution. In
J. F. Miller, A. Thompson, P. Thomson, and T. C.
Fogarty T. C. (eds.), Proceedings of the Third
International Conference on Evolvable Systems: From
Biology to Hardware (ICES2000), Lecture Notes in
Computer Science, Vol. 1801, 252-263. Springer-
Verlag.

31. T. Yu, and J. F. Miller (2000). Neutralit y and
Evolvabilit y of a Boolean Function Landscape. In J. F.
Mill er, M. Tomassini, W. Langdon (eds.),
EuroGP'2000: Fourth European Conference on
Genetic Programming. Lecture Notes in Computer
Science, Vol. 2038, 204-217. Springer-Verlag.

