Evolution of Cartesian Genetic Programs Capable of
Learning

Gul Muhammad Khan
Electrical Engineering
Department
NWFP UET Peshawar

Pakistan
gk502@nwfpuet.edu.pk

ABSTRACT

We propose a new form of Cartesian Genetic Programming
(CGP) that develops into a computational network capable
of learning. The developed network architecture is inspired
by the brain. When the genetically encoded programs are
run, a networks develops consisting of neurons, dendrites,
axons, and synapses which can grow, change or die. We
have tested this approach on the task of learning how to
play checkers. The novelty of the research lies mainly in
two aspects: Firstly, chromosomes are evolved that encode
programs rather than the network directly and when these
programs are executed they build networks which appear to
be capable of learning and improving their performance over
time solely through interaction with the environment. Sec-
ondly, we show that we can obtain learning programs much
quicker through co-evolution in comparison to the evolution
of agents against a minimax based checkers program. Also,
co-evolved agents show significantly increased learning capa-
bilities compared to those that were evolved to play against
a minimax-based opponent.

Categories and Subject Descriptors

1.2.2 [ARTIFICIAL INTELLIGENCE]: Automatic Pro-
gramming— Program synthesis; 1.2.6 [ARTIFICIAL IN-
TELLIGENCE]: Learning—Connectionism and neural nets

General Terms

Algorithms, Design, Performance

Keywords

Cartesian Genetic Programming, Computational Develop-
ment, Co-evolution, Artificial Neural Networks, Checkers

1. INTRODUCTION

In our view the process of biological development under-
pins learning. Since in biology all learning occurs during

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

GECCO’09, July 8-12, 2009, Montréal Québec, Canada.

Copyright 2009 ACM 978-1-60558-325-9/09/07 ...$5.00.

Julian F. Miller
Intelligent System Design
Group
Electronics Department
University of York
jfm7@ohm.york.ac.uk

development, and DNA does not in itself encode learned in-
formation. This raises the question: How is a capability for
learning encoded at a genetic level? We are also interested
in finding out how important for learning, is the interaction
between two systems developing in response to each other?
In this paper, we evolve genotypes that encode programs
that when ezecuted gives rise to a neural network that plays
checkers. In particular, we demonstrate how important it is
to co-evolve and co-develop two agents, instead of evolving
and developing a single agent for learning.

Following Khan et al. the genotype we evolve is a set
of computational functions that are inspired by various as-
pects of biological neurons [10]. Each agent (player) has a
genotype that grows a computational neural structure (phe-
notype). The initial genotype that gives rise to the dynamic
neural structure is obtained through evolution. As the num-
ber of evolutionary generations increases the genotypes de-
velop structure that allow the players to play checkers in-
creasingly well.

Our method employs very few, if any, of the traditional no-
tions that are used in the field of Artificial Neural Networks.
Unlike traditional ANNs we do not evolve or directly adjust
set of numbers that defines a network. We run evolved pro-
grams that can adjust the network indefinitely. This allows
our network to learn while it develops during its lifetime.
The network begins as small randomly defined networks of
neurons with dendrites and axosynapses. The job of evo-
lution is to come up with genotypes that encode programs
that when ezxecuted develop into mature neural structures
that learn through environmental interaction and continued
development.

ANNs can only solve a specific problem as they model
learning through synaptic weights. Whereas memory and
learning in brains is caused by many other mechanisms.
Synaptic weights are only responsible for extremely short
term memory. Also if very complex tasks are required to be
solved with say, billions of weights, current traditional ap-
proaches won’t scale. In principle ours will as the network
complexity is not related to the complexity of the evolved
programs. So in a nutshell we choose to model at this partic-
ular level of abstraction because we feel it has the plasticity
we need and will scale better. What we do is inspired by
biology. We are not trying to model biology. We expect the
additional model complexity to pay off when we allow it to
develop in interaction with the environment over long time
scales and on different problems simultaneously.

There are a number of techniques in which an agent can

the highest potential makes the jumping move. In addition,
there are also five output dendrite branches distributed at
random locations in the CGPCN grid. The average value of
these branch potentials determine the direction of movement
for the piece. Whenever a piece is removed its dendrite
branch is removed from the CGPCN grid.

7.2 CGP Computational Network (CGPCN)
Setup

The CGPCN is arranged in the following manner for this
experiment. Each player CGPCN has neurons and branches
located in a 4x4 grid. Initial number of neurons is 5. Max-
imum number of dendrites is 5. Maximum number of den-
drite and axon branches is 200. Maximum branch statefac-
tor is 7. Maximum soma statefactor is 3. Mutation rate
is 5%. Maximum number of nodes per chromosome is 200.
Maximum number of moves is 20 for each player.

7.3 Fitness Calculation

The fitness of each agent is calculated at the end of the
game using the following equation:

Fitness = A+ 200(Kp — Ko) + 100(Mp — Mo) + N,

Where Kp represents the number of kings, and Mp repre-
sents number of men (normal pieces) of the player. Ko and
Mo represent the number of kings and men of the opposing
player. Njs represents the total number of moves played.
A is 1000 for a win, and zero for a draw. To avoid spend-
ing much computational time assessing the abilities of poor
game playing agents we have chosen a maximum number
of moves. If this number of moves is reached before either
of the agents win the game, then A =0, and the number
of pieces and type of pieces decide the fitness value of the
agent.

8. RESULTS AND ANALYSIS

In two independent evolutionary runs we evolved agents
against MCP (evolution) and co-evolved agents for one thou-
sand (1000) generations. Then we took the best players from
generations 50 to 1000 (in 50 generation intervals) from the
co-evolutionary runs and let them play against the players
evolved against the MCP at the same generation. In this
way we could assess whether co-evolved players play bet-
ter at the same generation than the agents that played only
against the professional checker software (whose level of play
does not change during the course of game). We evaluate
their performance over the five game series by calculating
their average fitness using the fitness function that was used
in evolution. It is important to note that over the five game
series there is no evolution. We just begin with a small ran-
dom network and run the programs that were evolved at the
generation in question over the sequence of five games.

In Figure 5 we have plotted the average fitness of both
co-evolved and evolved player when playing each other in
a five game series for different generations. The co-evolved
player in almost every case beats the evolved player by a
large margin. We also repeated these experiments under
exactly the same conditions but where the players played a
ten game sequence of games. In Figure 6 we have plotted
the average fitness in the same way as before. Comparing
the two figures, reveals that the players that were obtained
through co-evolution perform even better than the five game
players against the same players evolved against the MCP.
This indicates that on average the players who play a ten

Average Fitness

Average Fitness over 10 games

2500

T
Evolved Player —
Co-Evolved Player ----

Avv/ﬁ\/vv

1000 1200

2000

1500
1000

500 |-/

500

-1000

-1500

-2000

-2500

400 600 0
Number of Generations (5-Games)

Figure 5: Average fitness of Co-evolved player
against an evolved player for five games

2500

T
Evolved Player —
Co-Bvolved Player -----

2000

)

-2000

-2500

i
200 400 800 1000 1200

600
Number of Generations

Figure 6: Average fitness of Co-evolved player
against an evolved player for ten games

game series play checkers at a higher level than the players
who play the five game series. It is important to note that
the evolved programs for both cases are the same, the only
difference is that in one case the programs play a series of
ten games and the other they played only five games. This
is strong evidence that the programs are actually learning
how to play checkers better through experience alone.

To asess how large these margins of victory were, we
plotted the cumulative fitness (where each plotted fitness
is added to the previous) for both the agents playing a five
game series and those playing a ten game series. This is
shown in Figure 7 and we have plotted what the cumulative
fitness would be if the co-evolved agents won every game
against the evolved agents with one piece advantage, two
pieces advantage (or one King), three pieces (a king and a
piece), eight pieces (4 kings) or ten pieces (5 kings) advan-
tage. From these graphs, it is evident that the co-evolved
agent continues to perform better and wins every game by
a margin greater than nine pieces on average. In fact, the
ten game co-evolved players almost always beat the MCP
evolved players by more than eight pieces (4 kings), whereas
the five game players win by more than five pieces, but less
than six. The figure also shows that the players with ten
games experience are much superior to the same starting
players but who have only five game experience.

Average Cumulative Fitness

20000 — ;
5-Game Co-evolved Player —
10-Games Co-evolved Player ----
__ Win with One piece -----
Win with 2-pieces

18000

Win with 3-pieces
. Win with 8-pieces -~
“" Win with 10-pieces -----

°

16000

14000

12000

10000

8000

6000

4000

200 400 600 800 1000 1200 1400
Number of Generations
Figure 7: Average cumulative fitness of Co-evolved
player against an evolved player for five and ten

games

9. CONCLUSION

We have investigated the evolution and co-evolution of
checkers playing agents that are controlled by developmen-
tal programs. The agents evolve intelligent behaviour much
quicker through co-evolution rather than evolution against
a minimax based program. We also have shown that the co-
evolved agents improve with experience, and it appears that
we have successfully evolved CGP programs that encode an
ability to learn ’how to play’ checkers. In future, we are
planning to coevolve agents for longer, and allow more de-
velopmental experience through longer sequence of games,
after evolution is finished.

10. REFERENCES

[1] A. Cangelosi, S. Nolfi, and D. Parisi. Cell division and
migration in a ’genotype’ for neural networks.
Network-Computation in Neural Systems, 5:497-515,
1994.

[2] F. Dalaert and R. Beer. Towards an evolvable model
of development for autonomous agent synthesis. In
Brooks, R. and Maes, P. eds. Proceedings of the
Fourth Conference on Artificial Life. MIT Press, 1994.

[3] R. Dawkins and J. R. Krebs. Arms races between and
within species. In Proceedings of the Royal Society of
London Series B, volume 205, page 489U511, 1979.

[4] D. Federici. Evolving developing spiking neural
networks. In Proceedings of CEC 2005 IEEE Congress
on FEvolutionary Computation, pages 543-550, 2005.

[5] D. Fogel. Blondie24: Playing at the Edge of AL
Academic Press,London, UK, 2002.

[6] F. Gruau. Automatic definition of modular neural
networks. Adaptive Behaviour, 3:151-183, 1994.

[7] W. Hillis. Co-evolving parasites improve simulated
evolution as an optimization procedure. Artificial life
2, pages 313-324, 1991.

[8] N. Jacobi. Harnessing Morphogenesis, Cognitive
Science Research Paper 423, COGS. University of
Sussex, 1995.

[9] G. Kendall and G. Whitwell. An evolutionary
approach for the tuning of a chess evaluation function

(10]

(11]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

(20]

(21]

(22]

23]

(24]
25]

[26]

using population dynamics. In IEEE. CEC. 2001,
pages 995-1002, 2001.

G. Khan, J. Miller, and D. Halliday. Coevolution of
intelligent agents using cartesian genetic programming.
In Proc. GECCO, pages 269 — 276, 2007.

A. Lubberts and R. Miikkulainen. Co-evolving a
go-playing neural network. in Coevolution: Turning
Adaptive Algorithms upon Themselves, Belew R. and
Juille H (eds.), pages 14-19, 2001.

J. Miller, D. Job, and V. Vassilev. Principles in the
evolutionary design of digital circuits — part i. Journal
of Genetic Programming and Evolvable Machines,
1(2):259-288, 2000.

J. F. Miller and P. Thomson. Cartesian genetic
programming. In Proc. FuroGP, volume 1802 of
LNCS, pages 121-132, 2000.

D. Moriarty and R. Miikulainen. Discovering complex
othello strategies through evolutionary neural
networks. Connection Science, 7(3-4):195-209, 1995.
S. Nolfi and D. Floreano. Co-evolving predator and
prey robots: Do ’arm races’ arise in artificial
evolution? Artificial Life, 4:311-335, 1998.

S. Nolfi, O. Miglino, and D. Parisi. Phenotypic
plasticity in evolving neural networks. in gaussier, d.p,
and nicoud, j.d., eds. In Proceedings of the
International Conference from perception to action.
IEEE Press, 1994.

J. Paredis. Coevolutionary constraint satisfaction. In
Proceedings of the third international conference on
parallel problem solving from nature, Springer- Verlag,
volume 866, pages 46-55, 1994.

J. Paredis. Coevolutionary computation. Artificial
Life, 2(4):355-375, 1995.

J. Pollack, A. Blair, and M. Land. Coevolution of a
backgammon player. In In: Langton, C.

(ed), Proceedings artificial life 5. MIT Press.

D. Roggen, D. Federici, and D. Floreano. Evolutionary
morphogenesis for multi-cellular systems. Journal of
Genetic Programming and FEvolvable Machines,
8:61-96, 2007.

C. D. Rosin. Coevolutionary search among
adversaries. Ph.D. thesis, University of California, San
Diego., 1997.

A. Rust, R. Adams, and B. H. Evolutionary neural
topiary: Growing and sculpting artificial neurons to
order. In Proc. of the 7th Int. Conf. on the Simulation
and synthesis of Living Systems (ALife VII), pages
146-150. MIT Press, 2000.

A. G. Rust, R. Adams, S. George, and H. Bolouri.
Activity-based pruning in developmental artificial
neural networks. In Proc. of the Furopean Conf. on
Artificial Life (ECAL’97), pages 224-233. MIT Press,
1997.

J. Schaeffer. One Jump Ahead: Challenging Human
Supremacy in Checkers. Springer, Berlin, 1996.

G. Shepherd. The synaptic organization of the brain.
Oxford Press, 1990.

A. Van Ooyen and J. Pelt. Activity-dependent
outgrowth of neurons and overshoot phenomena in
developing neural networks. Journal of Theoretical
Biology, 167:27-43, 1994.

