Evolutionary Cross-domain Hyper-Heuristics

Patricia Ryser-Welch
University of York
York Road
York

ork
Patricia.Ryser-Welch@York.ac.uk Julian.Miller@York.ac.uk

1. INTRODUCTION

Designing effective algorithms to solve computational prob-
lems is difficult and time-consuming. The standard method-
ology for designing such algorithms is “top-down”. This pro-
cess breaks down large problems into more understood com-
ponents and eventually identifies problem-specific operators
that algorithms need to use to solve the given problem. Of-
ten, restrictive assumptions have to be made about the use
of operators within an algorithm.We argue that it is desir-
able to automate this process. A wider of range of possible
algorithms can be generated automatically and new TSP
solvers could be discovered, in a reasonable amount of time
and without the restrictions imposed by the human mind.

We focus on evolving a fixed sequence of operators in-
side the loop of a Memetic Algorithm, using an innovative
automatic algorithm creation method. We are proposing to
extract and hard-code these evolved algorithms in new inde-
pendent solvers, to find good solutions to a chosen problem.

2. CROSS-DOMAIN HYPER-HEURISTICS

Hyper-heuristics searches the space of heuristics and meta-
heuristics, so that it can generate high-quality algorithms for
a problem. Algorithms have been constructed iteratively us-
ing “templates of operations” based on well-known heuristic
and meta-heuristic methods (i.e. Iterated Local Search and
Memetic algorithms). Problem-specific heuristics are chosen
iteratively during the search to find better solutions in the
problem search space.

Cross-Domain Hyper-heuristics guides the constructions
of algorithms, using a general-purpose “template of types
of instructions”. Instead of referring to a specific primi-
tives, the template randomly chooses a problem operator
from a specific subset. These subsets can include mutation,
crossover or even a Local Search operator. The results of the
CHeSCs 2011 competition represent the state-of-the art in
the automatic selection of algorithms for optimisation prob-
lems. It was made possible by the use of the HyFlex frame-

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage, and that copies bear this notice and the full ci-
tation on the first page. Copyrights for third-party components of this work must be
honored. For all other uses, contact the owner/author(s). Copyright is held by the
author/owner(s).

GECCO’15 Companion, July 11-15, 2015, Madrid, Spain.

ACM 978-1-4503-3488-4/15/07..

http://dx.doi.org/10.1145/2739482.2764644

Julian F. Miller

University of York
York Road

Shahriar Asta
Notthingham University
Wollaton Road
Nottingham

sba@cs.nott.ac.uk

Y

Figure 1: Process used to calculate the fitness value

of an algorithm during evolution.
Hyper-Heuristics Meta-Heuristics
Algorithm

Space of a
problem’s solutions

1. Orders of primitives 2. Apply primitives to

the problem search space *

A non-deterministic
algorithm searches
for a suitably good
solution of an instan-|
ce of a problem.

Al possible solutions

A form of GP of a problem. This

generates the order

space includes all
the feasible and
infeasible solutions.

instructions of
a Meta-Heursitics

4. lRe‘“"f‘ ‘:;e"?"‘esil) 3. Return the fitness of
values of al e problem's s, :
solutions found by the the problem’s solution

Meta-Heuristics found

work [3] 1 which includes several test problems together with
their specific heuristics. For the TSP, this framework in-
cludes 10 benchmarks and 13 low-level heuristics for the
Travelling Salesman Problem.

The advantage of Cross-Domain hyper-heuristics lies in
letting the programmers develop an automatic algorithm
creation method, without any extensive knowledge of the
problems to solve. These “adaptive algorithms” have solved
several well-established combinatorial problems, with a high
level of generality. However, the evolved sequences of heuris-
tic operations are often very long, not re-usable and defy
human comprehensibility.

3. THE PROPOSED METHOD

We are proposing to use evolution to automatically design
a high-quality solver, by letting Hyper-heuristic algorithms
assembling and testing part or the whole algorithm (in blue
in figure 3). At each iteration of the Hyper-Heuristic search,
the fitness of valid sequences are calculated by executing
a hybrid meta-heuristic several times (i.e. steps 1,2, 3 of
figure 3). All the fitness values of the problem solutions
found by the meta-heuristics (see step 4 of figure 3) are re-
turned the Hyper-heuristic algorithm; the average of these
values determine the quality of the algorithm. At the end
of this process, a generated algorithm can then be extracted
to be coded with a programming language. We determine
whether the quality of the generated sequences of instruc-
tions by analysing their performance and structure, in an
independent and subsequent process.

!Details of the challenge and the results can be found at
http://www.asap. cs.nott.ac.uk/external/chesc2011/ and
http://www.hyflex.org/chesc2014/

Chosen problem domain: More formally, let G = (V| E)
define a graph, where V' = {1,2,...,n} is a vertex set and E
the set of edges. Denote, C' = ¢;; to represent a “weight”
matrix associated with F, that models the distance from
city i to city j. When a tour is represented as a permu-
tation (i1,142,...,9n), the “cost matriz” becomes an essen-
tial element to calculate its overall distance. The quantity
to minimise becomes ¢, iy + Cig,ig + ... + Cin,i [1]. For
our purporse, we have chosen to use the following heuris-
tics offered by Hyflex; Order Based Crossover, Partially-
Mapped Crossover, Subtour-Exchange Crossover, Insertion
Mutation, Exchange Mutation, Scramble Mutation, Simple
Inversion Mutation, 2-opt Local Search, 3-opt Local Search,
Best 2-opt Local Search. Additionally ReplaceLeastFit, Re-
placeRandom, RestartPopulation alters the population of
TSP solutions through generations. We will be using all
the TSP problem instances offered by Hyflex. These bench-
marks include problems with various numbers of cities rang-
ing from 299 to 18512. The names of these problems are:
PR299, PR439, RAT575, U724, RAT783, PCB1173, D1291,
USA13509, and D18512. Hyflex parameters were set to to
0.89 for the depth of the local search, increasing the number
of maximum number of iterations to 40 for any local search.

Meta-heuristics: Our hybrid Memetic Algorithm (the
green component in figure 3) applies the template described
in algorithm 1. The body of the loop of a Memetic Algorithm
is generated by the evolutionary Hyper-Heuristic algorithm
(CGP). This template prevents having an invalid algorithm.

Algorithm 1 : The template of an hybrid MA

po < GeneratelnitialSolution()
: p < Apply a Local Search(po)
while Not optimum and EvalCount < MaxEvals do
t < SelectParents(p)
NumEvals = 0
while Not end of evolved sequence of operations do
Apply current operation to ¢ or p
NumkEvals = NumEvals + 1
end while
EvalCount = EvalCount + NumEvals
: end while

rE =i AN S

=

Hyper-heuristics algorithm : Cartesian Genetic Pro-
gramming (CGP) is used to automatically generate the se-
quence of instructions. We use a one-dimensional CGP ge-
ometry with 100-nodes. To search the algorithm space, we
use a 1+ 1 Evolutionary Strategy with a maximum number
of allowed iterations set to 1200 and a mutation rate of 5%.
The reason why such a simple evolutionary strategy works
well is primarily due to the presence of non-coding genes. In
our case this means that the applying simple mutations can
explore a wide distribution of evolved metaheuristics. This
allows continual exploration of the algorithm space even if
the algorithm fitness (performance measure) is fixed [2].

4. EXPERIMENTAL RESULTS

CGP has favoured sequences with hill-climbing operators;
one sequence applies Best 2- Opt Local Search, Simple Inver-
sion Mutation, 3-Opt Local Search, Best 2-Opt Local Search
and ReplaceLeastFit . This sequence tend to move towards
a minima more efficiently. In the first 1000 generations, this
hybrid Memetic Algorithms reduces quickly the length of

the tours, then better TSP solutions are found as the search
approach nearer and nearer the known minima. The relative

tour length — known optimum

error was obtained using the formulae: ko optimen
The median relative errors goes over marging for instances
between 299 and 2152 cities; it was below 4%, with the ex-
ception of the benchmark D1291, which increases to 8% ap-
proximately. However, with more evaluations it is likely that
the known best global optimum could be found and indeed
perhaps even be surpassed.

5. CONCLUSIONS

We have presented a new Hyper-heuristics method that
not only optimises meta-heuristics, but also allows them
to be extracted and analysed. We show that not only can
the method can produce human-readable, but also effective
new algorithms. The results of our experiments are promis-
ing. Close solutions to the actual known optima have been
found for the TSP benchmarks. We would have preferred to
have established new global optima though. However, this
could be just a matter of more evaluations. Nonetheless, we
believe evolutionary cross-domain hyper-heuristics needs to
be applied to other problems, such the personal scheduling
and the vehicle routing problems to generate new hybrid
memetic algorithms. Then the full potential of this tech-
nique can be fully evaluated. The concept of evolutionary
memetic algorithm could then be extended to evolutionary
meta-heuristics.

In the future we intend to investigate less restrictive pat-
terns of instructions, in order to learn new possible sequences
of operations that humans have not yet though of, but still
remain readable and understandable. Perhaps these new al-
gorithms could lower the known minima of these instances.
It would also be interesting to use an encoding scheme that is
expressive enough to encode more challenging programming
structure (i.e. iterations).

6. ACKNOWLEDGMENTS

Thanks to Ender Ozcan and Gabriela Ochoa for kindly
answering to all our requests. This work made use of the
facilities of N8 HPC provided and funded by the N8 consor-
tium and EPSRC (Grant No.EP/K000225/1). The Centre
is co-ordinated by the Universities of Leeds and Manchester.

7. REFERENCES

[1] Keld Helsgaun. An effective implementation of the
lin—kernighan traveling salesman heuristic. European
Journal of Operational Research, 126(1):106-130, 2000.

[2] J. F. Miller, editor. Cartesian Genetic Programming.
Natural Computing Series. Springer, 2011.

[3] Gabriela Ochoa, Matthew Hyde, Tim Curtois, Jose A
Vazquez-Rodriguez, James Walker, Michel Gendreau,
Graham Kendall, Barry McCollum, Andrew J Parkes,
Sanja Petrovic, et al. Hyflex: A benchmark framework
for cross-domain heuristic search. In Evolutionary
Computation in Combinatorial Optimization, pages
136-147. Springer, 2012.

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 7.20 points
 Normalise (advanced option): 'original'

 32

 D:20150608092019
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352
 Fixed
 Left
 7.2000
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 2
 1
 2

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move down by 23.83 points
 Normalise (advanced option): 'original'

 32

 D:20150608092019
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 795
 352

 Fixed
 Down
 23.8320
 0.0000

 Both
 10
 AllDoc
 10

 CurrentAVDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2 2.0
 Quite Imposing Plus 2
 1

 0
 2
 1
 2

 1

 HistoryList_V1
 qi2base

