
Chapter•11.•
The•Software•garden•

Julian•F.•Miller••

Department•of•Electronics,•University•of•York,•UK•

Abstract•

It is commonplace for human beings to manipulate and control 
systems that they only understand at a behavioural level. Yet we expect 
software engineers to build software systems by assembling instructions 
that are extremely fragile and require extremely precise understanding of 
how these instructions interact. We argue that such a method of 
programming computers will not scale to future demand. We suggest that 
future software might profitably be constructed using a horticulture-
inspired programming methodology. Evolved software seeds will be 
planted and shaped in software gardens for desired computational 
behaviour. 

Introduction•
It is self-evident that human beings routinely shape, alter and interact 

with systems that they have little detailed or precise understanding of. 
Indeed, many of these systems are not merely complicated systems but 
truly complex systems 1.  In human society examples of these interactions 
are plentiful. In fact, it is easy to argue that such interactions form the vast 
majority of all interactions between human beings and the physical world. 
We can give many concrete examples of such interactions: trading stocks 
and shares, animal husbandry, horticulture, sculpture, carpentry, ch oral 
singing, writing. Interactions between humans and the physical world 

                                                      
1 Complicated systems often have many parts that interact through precisely 
defined interactions. They are engineered using top-down design and analysis. On 
the other hand, complex systems typically have many parts interacting with each 
other through numerous and often poorly defined mechanisms. They show 
sensitivity to external environments and exhibit collective behaviour and 
organization often at multiple levels of abstraction. 
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which require precise and detailed knowledge have emerged relatively 
recently in human history. We know this as the development of science. 
Indeed, so successful has this approach been that it has transformed human 
society within a few hundred years. For instance, physicists and engineers 
have learned how to manipulate silicon at such an exquisite level of detail  
that devices could be constructed that operate at an almost symbolic logical 
level at enormous speed. This has led to the development of computers and 
in turn the internet. However, at present to program computers requires 
humans to construct structures at an extraordinary level of precision. Such 
programs are extremely fragile and require humans to consciously and 
deliberately write thousands of instructions to achieve a desired outcome.  

The•Complexity•Ceiling•
We argue that there must be a natural limit to the size and complexity 

of human produced computer programs. We call this the complexity ceiling.  
Jaron Lanier, the pioneer of Virtual Reality, saw in 2003 that the complexity 
ceiling would be a fundamental problem (Lanier, 2003): 

Since the complexity of software is currently limited by the ability of 
human engineers to explicitly analyze and manage it, we can be said to 
have already reached the complexity ceiling of software as we know it.  If 
we don't find a different way of thinking about and creating software, we 
will not be writing programs bigger than about 10 million lines of code,  no 
matter how fast, plentiful or exotic our processors become. 

Well, he underestimated human ingenuity and since then software 
systems have continued to grow...  

Software complexity is crudely measured in counts of lines of code. 
The list below gives an indication of how many lines of code modern 
software systems have (McCandless, 2014): 

·  Linux 3.1: 15 million 
·  Windows 7: 40 million 
·  Microsoft Office 2013: 45 million 
·  Large Hadron Collider (total software): 50 million 
·  Mac OS X “ Tiger” : 85 million 
·  Average modern high end car: 100 million 

It is important to realise that some of these software systems are 
effectively separate software packages that have some interaction. This 
explains why an average modern high end car has more lines of code in its 
software than Microsoft Windows 7 operating system. It also calls into 
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question a line of code as a useful measure of software complexity. 
However, lines of code are directly related to human effort. 

Linus Torvald, the pioneering developer of the Linux operating system 
echoed some of Lanier's concerns and in 2011 he complained that Linux has 
become “ too complex”  and he was concerned that developers would not be 
would not be able to understand the software anymore. He said he was 
“ afraid of the day ”  when an error occurs that “ cannot be evaluated 
anymore”  (Kehrer, 2011). This brings us to an important question that is at 
the heart of this article: 

Is there an upper limit to the number of lines of code in a useful piece of 
software that can be produced by human beings? 

In Fred Brook's classic book The Mythical Man-Month he asserts that 
programmers produce about 10 good lines of code per day (Brooks, 1995)2. 
Let us now make some outrageous approximations. The current number of 
software programmers in the world has been estimated as approximately 
19 million (Hilwa, 2013).  Assume that all these software engineers are 
working on the same software project. Clearly, this would be an enormous 
undertaking and would for many reasons be infeasible. However, if this 
were possible then 190 million good lines of code could be produced per 
day. Imagining that a single program with this number of lines of good 
code could actually function is wildly optimistic for many reasons. Lehman 
noted (Lehman and Ramil, 2002) 

In every piece of real world software, there are embedded an unbounded 
number of assumptions.  Most of the assumptions are not decisions that 
you have taken, but things that you have not thought about 

Let us compare and contrast this with living systems and in particular 
a pear tree. It has been calculated that the single mature leaf of a pear tree 
has 50 million cells, while the entire tree has approximately 15,000 million 
cells (Stern, 1999, p.3). This is 150 times the number of lines of code in an 
average high-end car. The number of cells in an adult human body is 
estimated to be 1014. So there are a million times more cells in the human 
body than the largest software systems thus far constructed. A cell is an 
enormously complex entity itself, so equating cells to lines of code makes 
our argument heavily biased toward human designed programs (i.e. 
grossly underestimating biological complexity). In addition, living 

                                                      
2 A more recent book has reconfirmed this as a good estimate in more recent 
software projects (Jones and Bonsignour, 2011). 
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organisms are in a constant state of change and yet they maintain their 
overall function. For instance, in the human body it is estimated that 3 00 
million cells die and are replaced every minute (Center for Disease Control,  
2013).  Human engineered software resides in computer memory and if an 
error occurs a human being is required to re-install or re-load the software, 
or even replace the memory (i.e. it is very fragile). 

How long would it take all the software engineers on the planet to 
produce a piece of software with the same number of lines of code as there 
are cells in a human body? The answer (using the previously discussed 
assumptions) is 14,500 years. Clearly there is something very special 
happening in biology. It implies that there ought to be another way of 
programming complex systems. We suggest that this methodology should 
not require programmers to work at the level of logical instructions, but at 
a much higher level. We suggest that this level should produce computation 
at a visual (or sensory) level by combining visual computational elements 
that always perform some form of useful computation that can shaped via 
visual (sensory) indicators of the computation taking place. There is a form 
of computing called Visual Computing where computer scientists have 
tried to create a programming methodology rather like this. We discuss this 
in the next section. 

Visual•Programming•
Visual programming languages (VPLs) allow programmers to create 

programs by manipulating program elements graphically rather than by 
specifying them textually. VPL is also known as dataflow or diagrammatic 
programming. There are a large number of VPLs. One important 
characteristic of most VPLs is that syntax errors are impossible. The user is 
only allowed to manipulate graphical elements in a constrained way.   

The first so-called VPL, LOGO (Papert, 1980) was created in 1967 by 
Daniel G. Bobrow, Wally Feurzeig, Seymour Papert and Cynthia Solomon. 
The language included movement commands for a simple drawing “ robot”  
called a turtle.  However, the complete LOGO language is actually a dialect 
of the AI functional programming language LISP (McCarthy, 1960, 1962). 

Scratch•

Scratch is a recently created VPL (Resnick et al., 2009) in which 
different visual blocks can be snapped together rather like puzzle pieces. 
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The programming constructs are shaped so that they can only accept other 
constructs. Figure 1 shows a simple example of a Scratch program 3. 

 

 
Fig 1. Example program in Scratch that controls an animated crab 

 

 
Fig 2. Scratch programming development environment for the crab 
program 

 
In the development environment there is a programming area where the 

pieces are put together and an executable area where the program outputs 
are displayed. Usually programs control animated characters or shapes 
(which the user or programmer has previously created). Figure 2 shows the 
Scratch development environment for the crab program. When the “ When 
clicked”  piece is clicked, the crab in the executable area moves around a 
little at random. 

                                                      
3 Scratch is free to be used on the internet and is available at http://scratch.mit.edu/ 
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The programming area acts rather like the floor of a child ’s playroom 
where Lego bricks have been used on a number of projects. The user clicks 
on a stack of programming pieces and this causes the execution of the 
program. Scratch users mainly involve children between the ages of eight 
and sixteen, though as Resnick notes, a sizeable group of adults also 
participate (Resnick et al., 2009). 

LabView•

Engineers are already using forms of visual programming. LabView 4  
is a well-established VPL that is used by engineers to build mixed software 
and hardware systems, including analysis and data acquisition, instrument 
control, embedded control and monitoring, and automated test and 
validation. LabView uses a visual programming language called G.  G is a 
dataflow programming language in which the programmer draws, places 
and connects visual nodes icons together. The connections between these 
nodes propagate data. Nodes start executing as soon as they have their 
required data. Users build programs by dragging and dropping virtual 
instruments. However, building complex algorithms or large programs still 
requires detailed and extensive knowledge of the syntax behind LabView 
and its memory management. This means it is more like a visually assisted 
conventional programming system. An example of a LabView program 
and output 5 is shown in Figure 3. 

Nature’s•way•of•programming •
Complex livings systems are self-constructed. Single celled organisms 

replicate themselves and form vast collections that achieve global ‘goals’ 
that are emergent from the interactions between the cells and the 
environment in which they live. A classic organism in this regard is slime 
mould (Bonner, 2009). This organism undergoes distinct and dramatic 
developmental stages:  

 

                                                      
4 http://www.ni.com/labview 

5 This was obtained from http://www.scilab.org 
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Fig 3. Example of LabView programming and development environment.  
Courtesy National Instruments, www.ni.com 

 
 

·  amoebae: the cells are isolated and feed in isolation 
·  aggregation: when the food supply is exhausted the cells come 

together 
·  slug-like: the aggregated cells form a single creature that is capable of 

movement 
·  stalking: the cells rise up from the ground and form a stalk 
·  fruiting: the stalk produces a head which bears spores 
·  spore-dispersion: The spores are dispersed of the ground and hatch 

into amoebae 
 
Multicellular organisms are built via the process of biological 

development in which a single event, the fertilisation of an ovum, begins a 
process in which cells replicate in parallel and eventually differentiate into 
specialist cells which co-operate in the production of a huge collection of 
cells. This constitutes the body of the organism. Organisms continually 
change during their lifetime and yet largely maintain their basic 
functionality.  

Let us compare how organisms are ‘programmed ’ with how computer 
programs are produced. Cells contain information storage mainly in the 
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form of a sequence of base-pairs on a double-stranded DNA molecule. 
Collections of these bases form genes. Many cells contain collections of 
DNA molecules called chromosomes. One can think of the genes as 
analogous to the instructions in a computer program. The genotype (the 
collection of chromosomes) can be regarded as the program for a cell 
(Miller and Banzhaf, 2003).  The cell is an enormously complex entity. The 
bacterium E. Coli has the following components (Harold, 2001).  There are 
about 2,400,000 protein molecules (of 1,850 varieties), 1,400 mRNA 
molecules (600 varieties), 200,000 tRNA molecules (60 varieties), 20,000 
ribosomes, and 2.1 DNA molecules. This list continues. The recently 
decoded 4,639,221 base-pair genome has 4,289 protein-coding genes 
(Passarge, 2013).  Biological programs are made of this basic unit.  

Human beings do not create programs from a module or entity of the 
complexity of a cell. Indeed, many engineers and scientists would abhor 
the construction of anything in which the atomic unit was anything that 
complex. Despite this we argue that to break through the complexity 
ceiling we will need a software equivalent of a cell. We think a good 
analogy to the software construction methodology of the future is 
horticulture. We call it the software garden. We discuss this in the next 
section.  

A•Horticultural•Analogy•for•Programming•
In horticulture, as in many other human activities, humans manipulate 

complex systems to produce desired outcomes. We manipulate plants in a 
variety of ways, for instance, by pruning, fertilising, spraying, trainin g, 
grafting and breeding. Although recently plants have been manipulated at 
a genetic level, the majority of interactions between human beings and 
plants are phenotypic in nature.  

We believe that it is useful and apposite to compare the way plants are 
manipulated with the way computer programs are constructed.  

Example:•an•evolved•developmental•approach•to•creating•
virtual•organisms•

A convenient computational environment where virtual plants and 
other organisms can be studied and manipulated are cellular automata 
(CA) (Ilachinski, 2001).  They were invented by John von Neumann and 
Stanlislaw Ulam (Ulam, 1952; von Neumann, 1951). In CA, the world 
consists of cells obeying rules that depend of their discrete state and the 
states of their neighbours. By creating several CA maps one can simulate 
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both the cells themselves and chemicals that interact with the cells. The 
chemical CAs obeyed a simple diffusion law. Miller used these ideas 
together with a technique called Cartesian Genetic Programming (CGP) to 
represent and evolve cellular programs in which “ organisms”  can develop 
from a single cell (Miller, 2004). He showed that it was possible to evolve 
programs which caused the organisms to take on the appearance of various 
desired shapes (e.g. plant-like structures and national flags). Interestingly, 
the organisms could achieve stasis (or maturity) but when an alteration was 
made, the organism responded by repairing itself and in many cases 
eventually achieved stasis again. This characteristic was observed in a 
number of virtual organisms and was not explicitly rewarded by the fitness 
function used (i.e. it was emergent).  Figure 4 shows a cellular program that 
when run develops into a French flag which subsequently stops growing.  

 

Fig 4. Virtual organism that grows into a French flag and then stops 
growing 

Although the French flag organism achieves stasis, the individual cells 
each executing the same program are highly active. Indeed, the organism is 
in a constant state of rebuilding itself. This means that if the organism is 
damaged a dynamic period of activity starts up again until the organism 
becomes a French flag again. This is shown in Figures 5 and 6.  This 
behaviour is reminiscent of autonomous regeneration of the pond organism 
hydra, which can reform itself when its cells are dissociated and then 
reaggregated (Bosch, 2007; Gierer et al.,1972). 

 

Fig 5. French flag organism has red and blue sections removed. This 
causes rapid change until the organism recovers the French flag 
appearance whereupon the organism becomes static again. 
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Fig 6. Flag organism has cells randomly re-arranged. Rapid change 
occurs until the organism recovers the French flag appearance 
whereupon the organism becomes static again 

 
The grafting of two different virtual organisms was demonstrated in 

(Miller and Thomson, 2004). Figures 7 and 8 show the development of two 
German flag organisms. 

 

 

Fig 7. Evolved growing German flag organism 0 (Gf0) 

 

Fig 8. Evolved growing German flag organism 11 (Gf11) 

 
At iteration 11 the flags were divided and joined together, so that on 

the left half of the German flag organism were made of cells from organism 
11 (Gf11) and the right half were made of cells from organism 0 (Gf0). 
When a particular cell program decides to grow it replicates its own 
genotype. Figure 9 shows the locations of the two types of cells (top) and 
the phenotype of the grafted organism (bottom). In the former the black 
region indicates the locations of Gf11 cells and the red region the gGf0 cells. 
The graft behaves in a stable way, with each genotype dominating on each 
side of the hybrid organism and mixing taking place in the region around 
the graft site. 
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Fig 9. Two different organisms Gf11 and Gf0 are grafted together at 
iteration 11. The upper shows the location of each genotype over time 
and lower shows the phenotype.  

 

Fig 10. Evolved growing plant organism 9 (gp9).  

 

Fig 11. Evolved growing plant organism 13 (gp13).   

 
In another example, plant-like organisms were evolved (see Figures 10 

and 11). 
The organisms were grafted at iteration 11. Figure 12 shows both the 

location of cell types (red indicates cells belonging to organism gp13 while 
green indicates cells belonging to gp9). 

 

Fig 12. Two different virtual plant organisms gp13 and gp9 are grafted 
together at iteration 11. The upper shows the location of each genotype 
over time and lower shows the phenotype.  
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The•Software•Garden•
The software garden refers to a proposed visual developmental 

programming in which truly complex software is constructed by the 
manipulation of evolved computational developmental organisms. It is 
suggested that programmers of the future will manipulate (i.e. ‘program ’) 
complex software by manipulating the behaviour of software, by 
operations that are analogous to horticulturists. This form of programming 
will be more like a narrative. It will involve multiple parallel interactio ns 
with the software on multiple levels. Software will change in response to 
these interactions and new functionality will emerge rather than being 
engineered by design. Human ‘programmers’ will observe the 
computational behaviour of constructed systems through a number of 
visual or other sensory indicators of software function and they will carry 
out phenotypic manipulation so that the desired computational behaviour 
is more closely obtained. As we saw this is rather like how Scratch 
programs are constructed to manipulate animated characters. In the 
examples of growing flags and plants the objective is visual rather than 
computational, however we see no reason why computational behaviours 
could not be represented through visual indicators (or visualizations). 

In addition, we foresee that computer scientists will create 
computational ‘seed libraries’ which when planted in the appropriate 
computational environment will grow and develop towards certain desired 
computational behaviours. Analogues of many of the actions that 
horticulturalists perform will be created, including grafting, pruni ng, 
fertilizing, training, etc. This will allow computational systems to be 
programmed without the high-level programmer being aware of the 
internal computational mechanisms within the computational cells. We 
have seen by some simple examples that computational organisms can be 
evolved, that repair themselves, achieve maturity, and can be grafted.  
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