
Chapter•11.•
The•Software•garden•

Julian•F.•Miller••

Department•of•Electronics,•University•of•York,•UK•

Abstract•

It is commonplace for human beings to manipulate and control
systems that they only understand at a behavioural level. Yet we expect
software engineers to build software systems by assembling instructions
that are extremely fragile and require extremely precise understanding of
how these instructions interact. We argue that such a method of
programming computers will not scale to future demand. We suggest that
future software might profitably be constructed using a horticulture-
inspired programming methodology. Evolved software seeds will be
planted and shaped in software gardens for desired computational
behaviour.

Introduction•
It is self-evident that human beings routinely shape, alter and interact

with systems that they have little detailed or precise understanding of.
Indeed, many of these systems are not merely complicated systems but
truly complex systems 1. In human society examples of these interactions
are plentiful. In fact, it is easy to argue that such interactions form the vast
majority of all interactions between human beings and the physical world.
We can give many concrete examples of such interactions: trading stocks
and shares, animal husbandry, horticulture, sculpture, carpentry, ch oral
singing, writing. Interactions between humans and the physical world

1 Complicated systems often have many parts that interact through precisely
defined interactions. They are engineered using top-down design and analysis. On
the other hand, complex systems typically have many parts interacting with each
other through numerous and often poorly defined mechanisms. They show
sensitivity to external environments and exhibit collective behaviour and
organization often at multiple levels of abstraction.

231

which require precise and detailed knowledge have emerged relatively
recently in human history. We know this as the development of science.
Indeed, so successful has this approach been that it has transformed human
society within a few hundred years. For instance, physicists and engineers
have learned how to manipulate silicon at such an exquisite level of detail
that devices could be constructed that operate at an almost symbolic logical
level at enormous speed. This has led to the development of computers and
in turn the internet. However, at present to program computers requires
humans to construct structures at an extraordinary level of precision. Such
programs are extremely fragile and require humans to consciously and
deliberately write thousands of instructions to achieve a desired outcome.

The•Complexity•Ceiling•
We argue that there must be a natural limit to the size and complexity

of human produced computer programs. We call this the complexity ceiling.
Jaron Lanier, the pioneer of Virtual Reality, saw in 2003 that the complexity
ceiling would be a fundamental problem (Lanier, 2003):

Since the complexity of software is currently limited by the ability of
human engineers to explicitly analyze and manage it, we can be said to
have already reached the complexity ceiling of software as we know it. If
we don't find a different way of thinking about and creating software, we
will not be writing programs bigger than about 10 million lines of code, no
matter how fast, plentiful or exotic our processors become.

Well, he underestimated human ingenuity and since then software
systems have continued to grow...

Software complexity is crudely measured in counts of lines of code.
The list below gives an indication of how many lines of code modern
software systems have (McCandless, 2014):

· Linux 3.1: 15 million
· Windows 7: 40 million
· Microsoft Office 2013: 45 million
· Large Hadron Collider (total software): 50 million
· Mac OS X “ Tiger” : 85 million
· Average modern high end car: 100 million

It is important to realise that some of these software systems are
effectively separate software packages that have some interaction. This
explains why an average modern high end car has more lines of code in its
software than Microsoft Windows 7 operating system. It also calls into

232

question a line of code as a useful measure of software complexity.
However, lines of code are directly related to human effort.

Linus Torvald, the pioneering developer of the Linux operating system
echoed some of Lanier's concerns and in 2011 he complained that Linux has
become “ too complex” and he was concerned that developers would not be
would not be able to understand the software anymore. He said he was
“ afraid of the day ” when an error occurs that “ cannot be evaluated
anymore” (Kehrer, 2011). This brings us to an important question that is at
the heart of this article:

Is there an upper limit to the number of lines of code in a useful piece of
software that can be produced by human beings?

In Fred Brook's classic book The Mythical Man-Month he asserts that
programmers produce about 10 good lines of code per day (Brooks, 1995)2.
Let us now make some outrageous approximations. The current number of
software programmers in the world has been estimated as approximately
19 million (Hilwa, 2013). Assume that all these software engineers are
working on the same software project. Clearly, this would be an enormous
undertaking and would for many reasons be infeasible. However, if this
were possible then 190 million good lines of code could be produced per
day. Imagining that a single program with this number of lines of good
code could actually function is wildly optimistic for many reasons. Lehman
noted (Lehman and Ramil, 2002)

In every piece of real world software, there are embedded an unbounded
number of assumptions. Most of the assumptions are not decisions that
you have taken, but things that you have not thought about

Let us compare and contrast this with living systems and in particular
a pear tree. It has been calculated that the single mature leaf of a pear tree
has 50 million cells, while the entire tree has approximately 15,000 million
cells (Stern, 1999, p.3). This is 150 times the number of lines of code in an
average high-end car. The number of cells in an adult human body is
estimated to be 1014. So there are a million times more cells in the human
body than the largest software systems thus far constructed. A cell is an
enormously complex entity itself, so equating cells to lines of code makes
our argument heavily biased toward human designed programs (i.e.
grossly underestimating biological complexity). In addition, living

2 A more recent book has reconfirmed this as a good estimate in more recent
software projects (Jones and Bonsignour, 2011).

233

organisms are in a constant state of change and yet they maintain their
overall function. For instance, in the human body it is estimated that 3 00
million cells die and are replaced every minute (Center for Disease Control,
2013). Human engineered software resides in computer memory and if an
error occurs a human being is required to re-install or re-load the software,
or even replace the memory (i.e. it is very fragile).

How long would it take all the software engineers on the planet to
produce a piece of software with the same number of lines of code as there
are cells in a human body? The answer (using the previously discussed
assumptions) is 14,500 years. Clearly there is something very special
happening in biology. It implies that there ought to be another way of
programming complex systems. We suggest that this methodology should
not require programmers to work at the level of logical instructions, but at
a much higher level. We suggest that this level should produce computation
at a visual (or sensory) level by combining visual computational elements
that always perform some form of useful computation that can shaped via
visual (sensory) indicators of the computation taking place. There is a form
of computing called Visual Computing where computer scientists have
tried to create a programming methodology rather like this. We discuss this
in the next section.

Visual•Programming•
Visual programming languages (VPLs) allow programmers to create

programs by manipulating program elements graphically rather than by
specifying them textually. VPL is also known as dataflow or diagrammatic
programming. There are a large number of VPLs. One important
characteristic of most VPLs is that syntax errors are impossible. The user is
only allowed to manipulate graphical elements in a constrained way.

The first so-called VPL, LOGO (Papert, 1980) was created in 1967 by
Daniel G. Bobrow, Wally Feurzeig, Seymour Papert and Cynthia Solomon.
The language included movement commands for a simple drawing “ robot”
called a turtle. However, the complete LOGO language is actually a dialect
of the AI functional programming language LISP (McCarthy, 1960, 1962).

Scratch•

Scratch is a recently created VPL (Resnick et al., 2009) in which
different visual blocks can be snapped together rather like puzzle pieces.

234

The programming constructs are shaped so that they can only accept other
constructs. Figure 1 shows a simple example of a Scratch program 3.

Fig 1. Example program in Scratch that controls an animated crab

Fig 2. Scratch programming development environment for the crab
program

In the development environment there is a programming area where the

pieces are put together and an executable area where the program outputs
are displayed. Usually programs control animated characters or shapes
(which the user or programmer has previously created). Figure 2 shows the
Scratch development environment for the crab program. When the “ When
clicked” piece is clicked, the crab in the executable area moves around a
little at random.

3 Scratch is free to be used on the internet and is available at http://scratch.mit.edu/

235

The programming area acts rather like the floor of a child ’s playroom
where Lego bricks have been used on a number of projects. The user clicks
on a stack of programming pieces and this causes the execution of the
program. Scratch users mainly involve children between the ages of eight
and sixteen, though as Resnick notes, a sizeable group of adults also
participate (Resnick et al., 2009).

LabView•

Engineers are already using forms of visual programming. LabView 4
is a well-established VPL that is used by engineers to build mixed software
and hardware systems, including analysis and data acquisition, instrument
control, embedded control and monitoring, and automated test and
validation. LabView uses a visual programming language called G. G is a
dataflow programming language in which the programmer draws, places
and connects visual nodes icons together. The connections between these
nodes propagate data. Nodes start executing as soon as they have their
required data. Users build programs by dragging and dropping virtual
instruments. However, building complex algorithms or large programs still
requires detailed and extensive knowledge of the syntax behind LabView
and its memory management. This means it is more like a visually assisted
conventional programming system. An example of a LabView program
and output 5 is shown in Figure 3.

Nature’s•way•of•programming •
Complex livings systems are self-constructed. Single celled organisms

replicate themselves and form vast collections that achieve global ‘goals’
that are emergent from the interactions between the cells and the
environment in which they live. A classic organism in this regard is slime
mould (Bonner, 2009). This organism undergoes distinct and dramatic
developmental stages:

4 http://www.ni.com/labview

5 This was obtained from http://www.scilab.org

236

Fig 3. Example of LabView programming and development environment.
Courtesy National Instruments, www.ni.com

· amoebae: the cells are isolated and feed in isolation
· aggregation: when the food supply is exhausted the cells come

together
· slug-like: the aggregated cells form a single creature that is capable of

movement
· stalking: the cells rise up from the ground and form a stalk
· fruiting: the stalk produces a head which bears spores
· spore-dispersion: The spores are dispersed of the ground and hatch

into amoebae

Multicellular organisms are built via the process of biological

development in which a single event, the fertilisation of an ovum, begins a
process in which cells replicate in parallel and eventually differentiate into
specialist cells which co-operate in the production of a huge collection of
cells. This constitutes the body of the organism. Organisms continually
change during their lifetime and yet largely maintain their basic
functionality.

Let us compare how organisms are ‘programmed ’ with how computer
programs are produced. Cells contain information storage mainly in the

237

form of a sequence of base-pairs on a double-stranded DNA molecule.
Collections of these bases form genes. Many cells contain collections of
DNA molecules called chromosomes. One can think of the genes as
analogous to the instructions in a computer program. The genotype (the
collection of chromosomes) can be regarded as the program for a cell
(Miller and Banzhaf, 2003). The cell is an enormously complex entity. The
bacterium E. Coli has the following components (Harold, 2001). There are
about 2,400,000 protein molecules (of 1,850 varieties), 1,400 mRNA
molecules (600 varieties), 200,000 tRNA molecules (60 varieties), 20,000
ribosomes, and 2.1 DNA molecules. This list continues. The recently
decoded 4,639,221 base-pair genome has 4,289 protein-coding genes
(Passarge, 2013). Biological programs are made of this basic unit.

Human beings do not create programs from a module or entity of the
complexity of a cell. Indeed, many engineers and scientists would abhor
the construction of anything in which the atomic unit was anything that
complex. Despite this we argue that to break through the complexity
ceiling we will need a software equivalent of a cell. We think a good
analogy to the software construction methodology of the future is
horticulture. We call it the software garden. We discuss this in the next
section.

A•Horticultural•Analogy•for•Programming•
In horticulture, as in many other human activities, humans manipulate

complex systems to produce desired outcomes. We manipulate plants in a
variety of ways, for instance, by pruning, fertilising, spraying, trainin g,
grafting and breeding. Although recently plants have been manipulated at
a genetic level, the majority of interactions between human beings and
plants are phenotypic in nature.

We believe that it is useful and apposite to compare the way plants are
manipulated with the way computer programs are constructed.

Example:•an•evolved•developmental•approach•to•creating•
virtual•organisms•

A convenient computational environment where virtual plants and
other organisms can be studied and manipulated are cellular automata
(CA) (Ilachinski, 2001). They were invented by John von Neumann and
Stanlislaw Ulam (Ulam, 1952; von Neumann, 1951). In CA, the world
consists of cells obeying rules that depend of their discrete state and the
states of their neighbours. By creating several CA maps one can simulate

238

both the cells themselves and chemicals that interact with the cells. The
chemical CAs obeyed a simple diffusion law. Miller used these ideas
together with a technique called Cartesian Genetic Programming (CGP) to
represent and evolve cellular programs in which “ organisms” can develop
from a single cell (Miller, 2004). He showed that it was possible to evolve
programs which caused the organisms to take on the appearance of various
desired shapes (e.g. plant-like structures and national flags). Interestingly,
the organisms could achieve stasis (or maturity) but when an alteration was
made, the organism responded by repairing itself and in many cases
eventually achieved stasis again. This characteristic was observed in a
number of virtual organisms and was not explicitly rewarded by the fitness
function used (i.e. it was emergent). Figure 4 shows a cellular program that
when run develops into a French flag which subsequently stops growing.

Fig 4. Virtual organism that grows into a French flag and then stops
growing

Although the French flag organism achieves stasis, the individual cells
each executing the same program are highly active. Indeed, the organism is
in a constant state of rebuilding itself. This means that if the organism is
damaged a dynamic period of activity starts up again until the organism
becomes a French flag again. This is shown in Figures 5 and 6. This
behaviour is reminiscent of autonomous regeneration of the pond organism
hydra, which can reform itself when its cells are dissociated and then
reaggregated (Bosch, 2007; Gierer et al.,1972).

Fig 5. French flag organism has red and blue sections removed. This
causes rapid change until the organism recovers the French flag
appearance whereupon the organism becomes static again.

239

Fig 6. Flag organism has cells randomly re-arranged. Rapid change
occurs until the organism recovers the French flag appearance
whereupon the organism becomes static again

The grafting of two different virtual organisms was demonstrated in

(Miller and Thomson, 2004). Figures 7 and 8 show the development of two
German flag organisms.

Fig 7. Evolved growing German flag organism 0 (Gf0)

Fig 8. Evolved growing German flag organism 11 (Gf11)

At iteration 11 the flags were divided and joined together, so that on

the left half of the German flag organism were made of cells from organism
11 (Gf11) and the right half were made of cells from organism 0 (Gf0).
When a particular cell program decides to grow it replicates its own
genotype. Figure 9 shows the locations of the two types of cells (top) and
the phenotype of the grafted organism (bottom). In the former the black
region indicates the locations of Gf11 cells and the red region the gGf0 cells.
The graft behaves in a stable way, with each genotype dominating on each
side of the hybrid organism and mixing taking place in the region around
the graft site.

240

Fig 9. Two different organisms Gf11 and Gf0 are grafted together at
iteration 11. The upper shows the location of each genotype over time
and lower shows the phenotype.

Fig 10. Evolved growing plant organism 9 (gp9).

Fig 11. Evolved growing plant organism 13 (gp13).

In another example, plant-like organisms were evolved (see Figures 10

and 11).
The organisms were grafted at iteration 11. Figure 12 shows both the

location of cell types (red indicates cells belonging to organism gp13 while
green indicates cells belonging to gp9).

Fig 12. Two different virtual plant organisms gp13 and gp9 are grafted
together at iteration 11. The upper shows the location of each genotype
over time and lower shows the phenotype.

241

The•Software•Garden•
The software garden refers to a proposed visual developmental

programming in which truly complex software is constructed by the
manipulation of evolved computational developmental organisms. It is
suggested that programmers of the future will manipulate (i.e. ‘program ’)
complex software by manipulating the behaviour of software, by
operations that are analogous to horticulturists. This form of programming
will be more like a narrative. It will involve multiple parallel interactio ns
with the software on multiple levels. Software will change in response to
these interactions and new functionality will emerge rather than being
engineered by design. Human ‘programmers’ will observe the
computational behaviour of constructed systems through a number of
visual or other sensory indicators of software function and they will carry
out phenotypic manipulation so that the desired computational behaviour
is more closely obtained. As we saw this is rather like how Scratch
programs are constructed to manipulate animated characters. In the
examples of growing flags and plants the objective is visual rather than
computational, however we see no reason why computational behaviours
could not be represented through visual indicators (or visualizations).

In addition, we foresee that computer scientists will create
computational ‘seed libraries’ which when planted in the appropriate
computational environment will grow and develop towards certain desired
computational behaviours. Analogues of many of the actions that
horticulturalists perform will be created, including grafting, pruni ng,
fertilizing, training, etc. This will allow computational systems to be
programmed without the high-level programmer being aware of the
internal computational mechanisms within the computational cells. We
have seen by some simple examples that computational organisms can be
evolved, that repair themselves, achieve maturity, and can be grafted.

References•
J. T. Bonner. The Social Amoebae: The Biology of Cellular Slime Molds.

Princeton University Press, 2009.
T. C. Bosch. Why polyps regenerate and we don’t: Towards a cellular and

molecular framework for Hydra regeneration. Developmental Biology,
303(2):421–433, 2007.

F. Brooks. The Mythical Man-Month. Addison-Wesley, 1995.

242

Center for Disease Control. Human body statistics.
http://www.statisticbrain.com/human-body-statistics/, 2013. [Online;
accessed 3-May-2014].

A. Gierer, S. Berking, H. Bode, C. N. David, K. Flick, G. Hansmann, H.
Schaller, and E. Trenkner. Regeneration of hydra from reaggregated
cells. Nature New Biology, 239:98–101, 1972.

F. M. Harold. The Way of the Cell: Molecules, Organisms and the Order of Life.
Oxford University Press, 2001.

A. Hilwa. 2014 Worldwide Software Developer and ICT-Skilled Workforce
Estimates. Technical Report 244709, IDC Corporate USA, December
2013.

A. Ilachinski. Cellular Automata. World Scientific Publishing, 2001.
C. Jones and O. Bonsignour. The Economics of Software Quality. Addison-

Wesley, 2011.
A. Kehrer. Linux ist zu komplex geworden.

http://www.zeit.de/digital/internet/2011-11/linux-thorvalds-2011.
[Online; accessed 3-May-2014].

J. Lanier. The Complexity Ceiling. In J. Brockman, editor, The Next Fifty
Years: Science in the First Half of the Twenty-First Century, pages 216–229.
Phoenix, 2003.

M. Lehman and J. Ramil. Software uncertainty. In D. Bustard, W. Liu, and
R. Sterritt, editors, Soft-Ware 2002: Computing in an Imperfect World,
volume 2311 of LNCS, pages 174–190. Springer, 2002.

D. McCandless. Information is beautiful.
http://www.informationisbeautiful.net/visualizations/ million-lines-of-
code/ 2014. [Online; accessed 3-May-2014].

J. McCarthy. Recursive Functions of Symbolic Expressions and Their
Computation by Machine, Part I. Commun. ACM, 3(4):184–195, 1960.

J. McCarthy. LISP 1.5 Programmer’s Manual. MIT Press, 1962.
J. Miller. Evolving a self-repairing, self-regulating, french flag organism. In

K. Deb, editor, GECCO 2004, volume 3102 of LNCS, pages 129–139.
Springer, 2004.

J. F. Miller and W. Banzhaf. Evolving the program for a cell: from french
flags to Boolean circuits. In S. Kumar and P. J. Bentley, editors, On
Growth, Form and Computers, pages 278–302. Academic Press, 2003.

J. F. Miller and P. Thomson. Beyond the complexity ceiling: Evolution,
emergence and regeneration. In GECCO 2004 Workshop (WORLDS)
Proceedings, 2004.

S. Papert. Mindstorms: Children, Computers, and Powerful Ideas. Basic Books,
Inc., 1980.

E. Passarge. Color Atlas of Genetics. Thieme, 4th edition, 2013.

243

M. Resnick, J. Maloney, A. Monroy-Hernández, N. Rusk, E. Eastmond, K.
Brennan, A. Millner, E. Rosenbaum, J. Silver, B. Silverman, and Y.
Kafai. Scratch: Programming for all. Commun. ACM, 52(11):60–67, 2009.

K. Stern. Introductory Plant Biology. McGraw-Hill, 1999.
S. M. Ulam. Random processes and transformations. In Proceedings of the

International Congress of Mathematicians (1950), volume 2, pages 264–
275, Providence, Rhode Island, 1952. American Mathematical Society.

J. von Neumann. The general and logical theory of automata. In L. A.
Jeffress, editor, Cerebral Mechanisms in Behavior: The Hixon Symposium,
pages 1–31. John Wiley and Sons, 1951.

